
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 3222

Keywords: MAXQ, RISC, microcontroller, maxq risc architecture, micros

APPLICATION NOTE 3222

Introduction to the MAXQ Architecture
May 10, 2004

Abstract: The MAXQ RISC architecture combines high performance and low power with a variety of
complex analog functions.

Introduction to the MAXQ™ Architecture
Microcontroller system designers today have a myriad of choices when it comes to selecting a
microcontroller for a project - 8-bit, 16-bit, RISC, CISC, or something in between. As a rule, many
criteria are considered during the selection process. These can include price, performance, power, code
density, development time, and even future migration-path alternatives. To complicate the selection
process, tight demands for one criterion generally influence the options in other areas. Factors critical in
one application may have little importance in another. Consequently, there is no one microcontroller that
is perfect for all projects. But to be successful, a modern microcontroller must excel in many of the areas
under consideration.

When world-renowned analog chipmaker, Maxim Integrated Products, joined forces with the industry-
leading high-performance microcontroller supplier, Dallas Semiconductor, an opportunity to integrate
superior analog functionality with leading-edge microcontrollers was created. One result of this
partnership is the MAXQ RISC architecture, a new microcontroller core that combines high performance
and low power with a variety of complex analog functions.

When integrating complex analog circuitry with high-performance digital blocks, the operating
environment should be kept as quiet and noise-free as possible. However, the clocking and switching
that occur in the digital circuits of a microcontroller core inject noise into the sensitive analog section.
Therein lies the difficulty facing the mixed-signal designer: to achieve high microcontroller performance,
but minimize clock noise that can affect sensitive analog circuits.

The MAXQ architecture reduces noise through intelligent clock management and utilization. This means
that the MAXQ core enables clocks only to those circuits that require clocking at any instant, thus
reducing power consumption and providing a quiet environment optimal for analog integration.
Additionally, the MAXQ architecture performs many functions on each clock to maximize its performance.
This article provides an overview of the MAXQ architecture and highlights its competitive advantages.

No Wasted Cycle Clocks
The MAXQ architecture was designed to achieve a high performance-to-power ratio. The first requisite in
generating a high-efficiency machine is to maximize utilization of the clock cycles for user code
execution.

The most fundamental way that the MAXQ achieves high utilization is through single-cycle instruction

Page 1 of 7

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17

execution. Single-cycle instruction execution benefits the end user by increasing instruction bandwidth
that leads to higher performance, and/or reduced power consumption made possible by the ability to
reduce clock frequency. All MAXQ instructions execute in a single clock cycle except long jump/long call
and certain extended register accesses. While many RISC microcontrollers claim to support single-cycle
execution, this often applies to a small subset of instructions or addressing modes. With the MAXQ,
single-cycle execution is the norm.

Secondly, the MAXQ architecture achieves increased clock-cycle utilization because it does not require
an instruction pipeline (common to many RISC microcontrollers) to achieve single-cycle operation. The
MAXQ instruction decode and execution hardware is so simple (and timing so fast) that these operations
are moved into the same clock cycle as the program fetch itself, with minimal impact to the maximum
operating frequency. To illustrate the benefit of eliminating the instruction pipeline, consider the generic
RISC CPU that executes from a pipeline. When a program branch occurs, the CPU uses one or more
clock cycles (depending upon pipeline depth) to divert program fetching to the target branch address and
discards the instruction(s) already fetched. Clearly, using clock cycles to discard instructions, versus
executing them, is wasteful and undesirable as it reduces performance and increases power
consumption. While the operation is undesirable to the user, the clocks stolen by the CPU to reload the
pipeline are an artifact of the architecture and are unavoidable. The MAXQ architecture distinguishes
itself from other 8-bit and 16-bit RISC microcontrollers by offering single-cycle execution without an
instruction pipeline (and the wasted clock cycles that accompany it).

The MAXQ Instruction Word
The MAXQ instruction word is unique because there is only one instruction in the classical sense, the
"MOVE" instruction. The source and destination operands for the "MOVE" instruction are the basis for
creating instructions and memory accesses, and triggering hardware operations. Dissecting the 16-bit
MAXQ instruction word reveals only two components: a 7-bit destination field and an 8-bit source field
accompanied by a source format bit. The source format bit, when coded as 0, allows any immediate or
literal byte value (i.e., #00h-#FFh) to be supplied as a source operand. Unrestricted support for any
immediate byte source within a single instruction word can be very valuable during register initialization
routines and when performing ALU operations. The nonliteral source and destination possibilities are
subdivided into smaller groups, or modules. Figure 1 illustrates the 16-bit MAXQ instruction word.

Figure 1. The MAXQ instruction word is simple, yet very powerful.

All machine instructions reduce to source and destination operands for a transfer operation. These
operands can be used to select physical MAXQ device registers. This type of transfer is the most basic
and quite easy to imagine. In the MAXQ machine, however, the source and destination operands are not
rigidly associated with physical registers.

The MAXQ architecture uses this same source-to-destination transfer construction when performing

Page 2 of 7

indirect memory access. Certain destination and/or source encodings are identified as indirect access
portals to physical memories such as the stack, accumulator array, and data memory. These indirect
memory access portals use physical pointer registers to define the respective memory address locations
for access. As an example, one way that the data memory can be accessed indirectly is using the
"@DP[0]" operand. This operand, when used as a source or destination respectively, triggers an indirect
read or write access to the data memory location addressed by the Data Pointer 0 (DP[0]) register.

The MAXQ architecture also uses special destination and/or source encodings to trigger underlying
hardware operations. This trigger mechanism serves as the basis for creating MAXQ instructions that are
implicitly linked to certain resources. For example, math operations (ADD, SUB, ADDC, and SUBB) are
implemented as special destination encodings that implicitly target one of the working accumulators, with
only the source operand supplied by the user. Conditional jumps implicitly target the instruction pointer
(IP) for modification and are implemented as separate destination encodings for each status condition
that can be evaluated.

The indirect memory access and underlying hardware-operation triggers are combined whenever
possible to create new source/destination operands, which provide dual benefits. The autoincrement/
decrement indirect-access mnemonics for the data pointers demonstrate this combination. When reading
from data memory with DP[0], the user can optionally increment or decrement the pointer following the
read operation using the "@DP[0]++" or "@DP[0]--"source operand, respectively.

Numerous advantages come as a result of the MAXQ instruction word. The instruction word contains
modularly grouped source and destination operands, which allow simple and fast instruction-decoding
hardware and limit signal switching for those modules not involved in the transfer, thus reducing dynamic
power consumption and noise. The instruction word uses its full 16 bits to specify source and destination
operands, producing an abundant address space for physical registers, indirect memory access, and
hardware-triggered operations. Ultimately, coupling the abundant source/destination address space with
minimal restrictions on sourcedestination combinations gives rise to a highly orthogonal machine.

MAXQ System Highlights
The MAXQ system not only provides the basic hardware resources and capabilities expected by today's
microcontroller users, but it also enhances these resources and adds new features to expand device
functionality and utility. While it is not feasible to document all the MAXQ system resources, some are
discussed here.

Working accumulators
The MAXQ architecture thus far has been addressed as a single entity. However, two slightly different
versions, the MAXQ10 and MAXQ20, will be implemented in the initial MAXQ product family launches.
The primary difference between the MAXQ10 and MAXQ20 options is the standard width of the working
accumulators and supporting arithmeticlogic unit (ALU). The MAXQ10 supports 8-bit (byte-wide)
accumulators and ALU operations, while the MAXQ20 supports 16-bit (word-wide) accumulators and
ALU operations. The MAXQ devices come equipped with a minimum quantity of eight accumulators and,
depending on the application, can have as many as 16 accumulators. In the source/destination transfer
map, these accumulators are located in a system register module and are each directly accessible as
A[n], where n corresponds to their respective index. So, a MAXQ device equipped with 16 accumulators
would contain accumulators A[0], A[1]...A[14], and A[15]. Any one of the accumulators can be designated
as the active accumulator and indirectly accessed through the Acc mnemonic by setting the accumulator
pointer register, AP, to its specific index (i.e., Acc = A[AP]). The AP register implements only the number
of bits necessary to provide a binary decode into the accumulator array, so four bits are required in
MAXQ devices having 16 accumulators. All ALU operations implicitly specify the active accumulator as
the destination for the operation being performed. Take, for example, the "ADDC src" instruction. This

Page 3 of 7

instruction always performs the addition operation between the active accumulator, the carry flag, and
the source (src) operand specified. Awealth of bit manipulation and shift/rotate instructions surround the
active accumulator.

Additional hardware is attached to the accumulator pointer to expedite ordered and predictable accesses
to the accumulator file. The accumulator-pointer control (APC) register provides bits for resetting AP and
for streamlining increment, decrement, and modulo operations on the accumulator-pointer register.

The processor status flag (PSF) register contains five status flags, which have special meaning in
relation to the active accumulator status and ALU operations. These are the (C)arry, (Z)ero, (S)ign,
(E)qual, and (OV)erflow status flags. Some of these flags can be evaluated for performing conditional
jumps and returns. The PSF register also provides two additional generalpurpose flags (GF1 and GF0)
for user software needs.

Dedicated hardware stack
The MAXQ architecture contains a dedicated hardware stack. The stack depth for any MAXQ device is
product dependent. A dedicated hardware stack has two distinct advantages. Firstly, it allows data
memory to be preserved for other application uses instead of being consumed by stack, and secondly, it
supports fast PUSH/POP operations because a dedicated read/write port exists, which need not be
shared with data memory. If the hardware stack depth is insufficient for the context storage needed, then
the stack-like operation of the data pointers (pre-increment/decrement for writes, postincrement/
decrement for reads) is ideal for creating software stacks in data memory.

Flexible interrupt architecture
The MAXQ10 and MAXQ20 support a single, user-configurable, interrupt-vector address register. This
scheme allows placement of the interrupt identification and servicing routines according to user
preference. There is no natural priority forced upon any interrupt source. In addition to the normal
individual and global interrupt enables and flags, masking and identification flags are provided at the
module level. The individual source enabling, module-toglobal level masking, and prioritization of
interrupt sources is under the control of user code. The described interrupt support structure can be
advantageous. First, no code space is left unused. This generally cannot be said for microcontrollers
having dedicated interrupt-vector addresses per source, as code space associated with unused interrupt
vectors is often left unused. Second, the user has increased control over which interrupts are enabled
and over interrupt prioritization.

Hardware-loop counters reduce overhead
The MAXQ architecture implements a DJNZ instruction that can operate with either of two 16-bit loop
counter (LC[0] or LC[1]) registers. In a single-clock cycle, the "DJNZ LC[n], src" instruction decrements
the loop counter register and, if the counter has not reached 0, it conditionally branches program
execution to the specified address. For competing RISC microcontrollers, updating a counter register and
testing for a loop-terminating condition are generally two separate operations. Merging the two actions in
the MAXQ means that software loops, commonplace in microcontroller application code, require less
code and cycle overhead to manage the loop counter. The singlecycle, DJNZ-triggered loop-counter
decrement and conditional branch operation exactly follow our objective of maximizing utilization of clock
cycles.

Enhanced data pointers
The MAXQ comes equipped with three 16-bit data pointers (DP[0], DP[1], and BP[Offs]). All three data
pointers are individually configurable for either word- or byte-access mode via the Word/Byte Select
(WBSn) register bits in the Data-Pointer-Control (DPC) register. All three datamemory pointers support

Page 4 of 7

single-cycle indirect memory access with pre-increment/decrement for write operations and post-
increment/decrement for read operations. One of the data pointers, the Frame Pointer (FP=BP[Offs]), is
generated by the unsigned additive combination of a 16-bit basepointer (BP) register and an 8-bit offset
(Offs) register. This type of pointer is especially important to C compiler development tools, and more
specifically, in the handling of stack frames.

Harvard memory architecture with Von Neumann benefits
The MAXQ architecture uses a Harvard memory organization, one in which the program and data
memory buses are separate, so that simultaneous access to an instruction word and a data word can
occur in the same clock cycle. This style of memory organization is necessary to achieve maximum
performance and support single-cycle execution of instructions that access data memory. Microcontrollers
that use a Von Neumann memory interface experience performance bottlenecks associated with sharing
bus bandwidth among accesses to program memory, data memory, I/O, and peripherals.

Advocates of the Von Neumann memory architecture cite the inability to access program space as data
memory and vice versa as a weakness. Having accessibility can simplify constant storage, look-up
tables, and in-system or in-application programming alternatives. The MAXQ architectural solution to this
weakness is insertion of a memory-management unit (MMU) and fixed-utility ROM that provide logical
memory mappings and fixed utility-code routines to support in-system programming and the desired
access modes.

Centralized access to resources
Another important feature of the MAXQ architecture is the presence of a single transfer map that
contains access points to all resources. The reason for calling this a transfer map and not simply a
register map is the transfer-trigger concept upon which the MAXQ architecture is based.

The transfer map is partitioned into 16 modules. Within each module are 32 indexes or individual access
points. It should be emphasized, once again, that these access points can be used for direct read/write
access to registers, but they may also be used for indirect access to memory or to trigger hardware
operations. Of the 16 modules, the first six modules (M0–M5) are allocated for device-specific peripheral
functions. This provides a generous amount of space (6 x 32 = 192 locations) in the transfer map for
peripheral registers and access. These modules, based upon the specific MAXQ device option, are
populated with registers to implement functions such as digital I/O, timers, serial ports, hardware
multiplier, LCD driver, ADC, and in-circuit debugger. The last 10 modules (M6–M15) are reserved for
MAXQ system functionality. The system modules contain registers that are vital to MAXQ system
operation, such as those used for watchdog, system clock, and interrupt control. The system modules
additionally contain the working accumulator file, data pointers, and source/destination encodings that
trigger indirect memory access and/or special machine operations. The basic system register space is
intentionally kept as common as possible among MAXQ device options. Figure 2 presents an example
MAXQ source and destination transfer map.

Page 5 of 7

Figure 2. All MAXQ resources are accessible through a central transfer map.

The prefix register module is a feature of the MAXQ architecture that deserves special mention. There
exists a single prefix register in which the data (default = 00h) is used for those transfer operations
requiring it. This prefix register, when loaded, holds data for one clock cycle before being returned to a
00h state. An index (n) must accompany the prefix-register (PFX[n]) selection. Since there are 16
modules and 32 indexes per module in the transfer map, certain locations cannot be directly accessed
using the source/destination encoding bits available in a single-instruction word. This is true of the latter
16 source indexes and the latter 24 destination indexes in a module. The prefix register solves this
problem by opening an access window to these locations, which lasts for one cycle. When the PFX[n]
register is loaded, its index "n" supplies the high-order source and destination bits to the instruction
immediately following, where n = dds. In this respect, the prefix-register module is a means through
which additional decoding bits can be supplied to access extended (and/or protected) registers.
Operations and accesses that require loading the prefix register are automatically generated by the
assembler and need not be manually coded by the user. The prefix-register module can also be used to
concatenate source bytes when writing to 16-bit destinations. Although transparent to the user, the prefix
register is used exactly in this fashion for jumps and calls to 16-bit absolute addresses. For those
interested in future enhancements to the MAXQ architecture, the prefix-register module provides a
seamless mechanism for MAXQ instruction-set expansion or extension into currently unused system-
module space.

To summarize, the complete transfer map on any MAXQ device contains all system and peripheral
registers defined for the device. The same map provides indirect access points to the data memory,
stack memory, and accumulator array. The same map contains access points that trigger MAXQ

Page 6 of 7

machine instructions and underlying operations, and a mechanism for simple extension of the instruction
set in future MAXQ families. With access points to all resources aggregated into a central transfer map,
the number of source-to-destination transfer opportunities is very large. The centralized access also
simplifies clock distribution to only those resources needing a clock. This promotes a very quiet
environment (hence the "Q" in MAXQ) that is advantageous when integrating analog peripherals. The
MAXQ architecture allows maximum modularity and portability of peripheral functions. This strategy,
intentionally adopted to align with rapid product development cycles and ever-changing peripheral
requirements of the end user, promotes flexibility and reuse. The modularity of peripheral functions
minimizes the design time required to duplicate, add, or remove standard MAXQ peripheral modules
when creating new MAXQ devices for certain markets or applications.

Conclusion
The MAXQ architecture is truly an innovation in today's microcontroller industry. The MAXQ exploits a
transfer-triggered architecture to achieve the objectives of high bandwidth, high efficiency, and high
orthogonality. Furthermore, the modular organization of the MAXQ system and peripheral resources
leads to compiler optimizations and allows portability of modules for rapid creation of new MAXQ
derivatives. Looking to the future, the MAXQ architecture incorporates a built-in mechanism for
instruction-set expansion suitable for next-generation products. These compelling benefits make the
MAXQ architecture an ideal solution for existing and future projects, as it will inevitably rank high no
matter the selection criteria for the project.

MAXQ is a registered trademark of Maxim Integrated Products, Inc.

Related Parts

MAX1460 Low-Power, 16-Bit Smart ADC

MAXQ2000 Low-Power LCD Microcontroller Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3222: http://www.maximintegrated.com/an3222
APPLICATION NOTE 3222, AN3222, AN 3222, APP3222, Appnote3222, Appnote 3222
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 7 of 7

http://www.maximintegrated.com/datasheet/index.mvp/id/2130
http://www.maximintegrated.com/datasheet/index.mvp/id/4466
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ2000
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an3222
http://www.maximintegrated.com/legal

	maxim-ic.com
	Introduction to the MAXQ Architecture - Application Note - Maxim

