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Using LTspice for EMC and Signal Integrity
This is Part 2 of a series of three articles that provide LTspice® EMC and signal integrity 
simulation models. In “How to Get the Best Results Using LTspice for EMC Simulation—
Part 1”, we provided LTspice simulation tools for power supply components, conducted 
emissions, and immunity.

In Part 2, we will present a combination of LTspice and C-based programs to help the 
designer understand and improve wired network signal integrity. These tools will help 
the designer avoid multiple lab test iterations and expensive hardware redesigns. 
Simulation models are provided for compliance with fieldbus communications (RS-
485, RS-232), high speed backplane (LVDS), the ubiquitous USB standard, and the new 
single-pair Ethernet (SPE) enabling power delivery over data line (PoDL).

Why Should Designers Care about  
Signal Integrity?
Signal integrity1 is much more than just having a working link for your prototype. 
Even if your link seems to be working, it’s advisable to perform an in-depth check 
of your signal quality, for the following reasons:

	X Reliability: Distance, throughput, and environment might increase the binary 
error rate, reaching unacceptable values for the error correction mechanisms 
of your system.

	X IEEE standard compliance: Compliance with the IEEE recommendations 
ensures seamless interactions between members of the network.

	X EMC directives compliance: High slew rates and overshoots are often the 
cause of noncompliance as they carry high harmonic content.

Figure 1. An example of analysis performed with LTspice.
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Solving Signal Integrity Problems Using LTspice
This article will help you to answer key questions such as:

	X Is my system likely to have adequate signal integrity? 
	X Which signal aspect should I improve first? Should I improve the signal slew 

rate, rigging, jitter, or matching? 
	X My system is working, but will it work reliably over time, temperature, and 

component tolerances? 

After reading this article, you should be able to:

	X Implement signal integrity analysis within LTspice
	X Generate, import, and use representative test vectors and produce similar 

analysis and output as shown in Figure 1
	X Perform a statistical validation of your system over several randomized 

parameters

Performing an Eye Diagram Simulation
The eye diagram provides a convenient way to assess the conformity of a signal 
on either the transmitter or receiver side. The eye diagram is a time-based rep-
resentation of the signal. 

This representation uses persistence to analyze a large number of symbols and 
make sure that signal levels, jitter, and rise time are appropriate.

LTspice features some of the tools required for an eye diagram analysis, but to 
perform a full featured analysis there are extra steps to implement.

Generating a PWL File with Your Test Vector
LTspice provides an efficient way to play a test vector in your simulation. Playing 
a large amount of data is mandatory to provide good coverage of a situation that 
can lead to nonconformities.

Some nonconformities will show up in very specific situations such as: 

	X Long sequences of consecutive bits
	X Nonzero balanced sequences
	X Crosstalk from other nearby transmission channels

This means, for example, that if the data is generated using a random function you 
might have to use thousands of symbols to make sure you encounter a specific  
11 consecutive high level. 

The PWL data format that LTspice expects is shown in Figure 2.

 
 
 
Figure 2. The file format of a PWL test vector.

Where:
	X The first value is time
	X The second value is output (voltage, current, temperature, etc.)

	X -> is the tabulation character (Ascii code #09)

	X CR is the carriage return character (Ascii code #13)

	X LF is the line feed character (Ascii code #10) 

// initialize 
fprintf (pFile,"%dn\t0\n",0,initialVoltage); 
fprintf (pFile,"%dn\t0\n",DELAY,initialVoltage); 
 
// loop for every sample 
for (sample = 0 ; sample < NUMBER_OF_SAMPLES ; sample++) 
{ 
 // Compute a sample 
 logicLevel = rand() % 2; 
  
 // print sample 
 if (logicLevel == 0) 
 { 
  fprintf (pFile,"%fn\t%5.2f\n",(sample*symbolTime)+DELAY+transitionTime,voltageLow); 
  fprintf (pFile,"%fn\t%5.2f\n",((sample+1)*symbolTime)+DELAY-transitionTime,voltageLow); 
  printf ("%fn\t%5.2f\n",(sample*symbolTime)+DELAY,voltageLow); 
 } 
 else 
 { 
  fprintf (pFile,"%fn\t%5.2f\n",(sample*symbolTime)+DELAY+transitionTime,voltageHigh); 
  fprintf (pFile,"%fn\t%5.2f\n",((sample+1)*symbolTime)+DELAY-transitionTime,voltageHigh); 
  printf ("%fn\t%5.2f\n",(sample*symbolTime)+DELAY,voltageHigh); 
 } 
} 

Figure 3. An extract of the code used to generate a test vector.
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There are many options to generate test vectors. For our simulations we picked 
the C programming language.

With a few lines of code, you can easily generate large test vectors ready to inject 
into your simulation. Figure 3 presents an extract of the code used to generate 
the test vector and Figure 4 presents the waveform generated by the C program. 

 
Figure 4. A generated test vector using C program.

Concepts used in wired communications, such as bit stuffing, can be imple-
mented with a few lines of code as illustrated in Figure 5.

// Max consecutive identical symbol (for droop) 
#define MAX_CONSECUTIVE_0 7 
#define MAX_CONSECUTIVE_1 10 
 
[...] 
 
if (consecutiveHigh > MAX_CONSECUTIVE_1)  
{ 
 printf("Hit Max 1 limit - Bit stuffing a Zero\n"); 
 logicLevel = 0; 
 consecutiveHigh = 0; 
} 
if (consecutiveLow > MAX_CONSECUTIVE_0) 
{ 
 printf("Hit Max 0 limit - Bit stuffing a One\n"); 
 logicLevel = 1; 
 consecutiveLow = 0; 
} 

Figure 5. Code is provided in the links of this article.P1

Generating a PWL file with a Captured Test Vector
Using real-world data and importing the data into LTspice is also possible. Once 
the data is acquired with your regular laboratory equipment you can import it with 
only a few steps. 

For example, Figure 6 is a capture of a USB 1.0 communication performed with 
an oscilloscope.

 
 
 
 
 
Figure 6. A USB signal captured using laboratory equipment.

Figure 7 is a typical example of a dataset saved by an oscilloscope (the exact for-
mat might differ but the given rules to import the data to LTspice will still apply).

23

1 

 
 
Figure 7. Raw data of the captured USB signal.

To use this data set in an LTspice simulation, a few modifications are needed: 

1. The header line must be removed

2. Only one column of data must be present in the PWL file provided to LTspice

3. Time values must be positive only

Then your data is ready for use within LTspice.

 
 
 
 
 
 
 
Figure 8. A USB signal imported in LTspice.
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Using a Test Vector PWL File
To use your generated PWL file you can add a voltage source and file path to your 
design, as shown in Figure 9.

 
Figure 9. A PWL option for the voltage source.

Both absolute and relative file paths will work, however, usage of relative paths 
is advisable as this makes your simulation portable and ready to share with  
your colleagues.

Figure 10. An example of a relative path.

Enabling and Tuning of the Eye Diagram Feature
To benefit from the full potential of this well-hidden feature of LTspice, you’ll first 
have to run your simulation.

 
Figure 11. Right click in this area to enable eye horizontal axis properties.

Once the simulation is finished and your signals are displayed, right click on the 
horizontal (time) axis.

A dialog will pop up, displaying an eye diagram button as shown in Figure 12.

Figure 12. The location of the eye diagram option.

This pop-up window allows you to enable and tune the eye diagram display, with 
self-explanatory parameters.

 
Figure 13. A setup of the eye diagram.

Upon validation your display will look like Figure 14.

Figure 14. An eye diagram display.

Computing and Displaying an Eye Diagram Mask
To simplify the assessment of signal integrity, the eye diagram can be associated 
with an eye diagram mask. An eye diagram mask is not a standard LTspice func-
tion, however, it is still possible to implement it (like the EMC limit line in Article 1).

The specification of the eye diagram is a standard, so most of the mask can be 
assessed from a reduced set of variables as described in Figure 15.
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Figure 15. An eye diagram and an eye diagram mask.

The following list defines the letters A to E in the eye diagram mask:

	X A: Eye flat width, this can be as low as zero in some mask definitions.
	X B: Eye width, this is key for assessing several parameters such as maximum 

jitter, slew rate, and baud rate.
	X C: Eye height, this might differ depending on if you are assessing this param-

eter at the near or the far end of your cable.
	X D: Eye center, this defines the center voltage of the eye.
	X E: Delay, this is used only in LTspice to move your signal within the plot window.

Generating an Eye Diagram Mask
In Part 1 of this article series, we described how to use drawing elements to dis-
play EMC limit lines over an FFT spectrum. In this article we show how to use the 
same tools to draw an eye diagram mask.

The generation of the eye diagram is more complex compared to generating and 
adding an EMC limit line. For eye diagrams, we use a webpage with JavaScriptP2 to 
generate the eye diagram definition, which can then be pasted into the plot set-
ting file (*.plt) of your LTspice signal display. This JavaScript program, as shown 
in Figure 16 is available for the engineer to complete their design.

Eye diagram definitions for common wired interface standards are already  
provided as presets. By clicking on each radio button, the fields are filled auto-
matically with typical values.

Figure 16. Presets of the eye diagram generator.

Fine tuning or implementation of your eye definition is also possible using the 
provided fields.

 

 

 
Figure 17. Eye mask input fields.

Corresponding plot setting commands are generated as you click on the update 
button. These lines are ready to be added to your plot settings file, following the 
method described in Part 1 of this article series.

 
Figure 18. Plot settings generated by the webpage.

Adjustments to the number of eyes to draw and the LTspice delay setting might be 
necessary to get the best display, as shown in Figure 19.

Figure 19. Plot settings generated by the webpage applied to waveforms.

Assessing Conformity over Tolerance Range
The components we use in our designs include wide tolerances, and by calcula-
tion, we can check whether or not these tolerances will be problematic. But when 
designs include hundreds of components, pen and paper or spreadsheet manual 
approaches are time consuming and may not capture important parameters. 
Using a narrower tolerance is possible for some devices, but picking the whole bill 
of materials in low tolerance components will cause price and availability issues, 
and will not account for the effects of aging or temperature dependency. 

https://www.analog.com


6  How to Get the Best Results Using LTspice for EMC Simulation—Part 2: Improving Signal Integrity

For the purpose of validating a design over its tolerances, spice and by extension 
LTspice feature several amazing tools. 

The following sections present techniques for tolerance analysis using Monte 
Carlo and Gaussian distributions as well as the worst-case analysis within LTspice.

Figure 20. Distribution of randomized values for the three main methods.

Common Test Circuit for Gaussian, Worst-Case, and 
Monte Carlo
To compare the relevance and exhaustivity in a real use case we picked the 
following example, based on the work of Graber4 this setup shows a simulation  
circuit for the SPE 10Base-T1L standard (10SPE) physical layer or MDI.

The simulation circuit shown in Figure 21 includes termination resistance of 100 Ω 
±10% for Analog Devices’ ADIN1110 or ADIN1100 10BASE-T1L Ethernet PHY/MAC-PHY. 

Signal coupling capacitance, power coupling inductors, common mode choke, and 
other EMC protection components are modeled. For some components, the rec-
ommended component value and tolerance range are added. 

Syntax for the return loss plot is:

(100+1/I(V1))/(100-1/I(V1))

Monte Carlo Simulation
A Monte Carlo simulation takes a random value from the tolerance range of each 
specified component in your simulation circuit. All values within the component 
tolerance range have an equal probability for circuit simulation. 

LTspice includes a convenient built-in Monte Carlo function with a simple syntax. 

For example, to create a 100 Ω resistor with 10% tolerance, you need to use the 
following syntax:

{mc(100R, ToIA)}

.param ToIA = 0.10

Table 1. Definition of Component Values and Tolerances 
with Monte Carlo Method

Designator Range Syntax of Component Value (Monte Carlo)

R1 90 Ω to 110 Ω {mc(100, ToIA)}

C2, C3 200 nF to 600 nF {mc(400 nF, ToIB)}

L1 500 μH to 1500 µH {mc(1000 µH, ToIC)}

L2, L3 0 nH to 500 nH {mc(250 nH, ToID)}

C6 0 pF to 200pF {mc(100 pF, ToIE)}

The circuit described in Figure 214 can be used to simulate return loss, which is a 
measure of all signal reflections likely to occur. 

Return loss is caused by impedance mismatches at all locations along a cable link. 
Return loss is expressed in decibels and is of particular concern for high data rate 
or long cable reach (1700 m) communications used in 10BASE-T1L.

Figure 21. Common test circuit for Gaussian, worst case, and Monte Carlo–based on reference.4

PHY IC and Termination
Capacitive Signal Coupling

Inductive Power
Coupling

Clamping
Diodes

Common-Mode Choke
Leakage Inductance

Parasitic Capacitance of
EMC and Surge Protection

Signal Injection
Circuitry

C1
5 pF

R1

C3

C2

L1 C4
25 pF

L2

L3

C5
5 pF

C6

V1

AC 1 0
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To add the MDI return loss limit line to your plot (red line shown in Figure 23), from 
the Plot Settings Menu hit Save Plot Settings. 

Open the .PLT file using a standard text editor. Copy and paste the line definition 
syntax as shown in the Excel file (Figure 22).

 
Figure 22. Line definition for LTspice plot settings file.

To obtain identical figures in your simulations please ensure that you right click 
the waveform, and then click the Don’t Plot Phase button.

Conclusion on the Monte Carlo Simulation 
The Monte Carlo simulation is a relevant way to assess the compliance of an elec-
tronic design over its tolerance range, it is very likely to suit the needs of most 
designers while keeping the number of simulations runs reasonable.

 
Figure 23. Differential return losses of a SPE termination—128 runs of Monte Carlo dis-
tributed parameters.

Worst-Case Simulation
The worst-case simulation function is not a built-in function of LTspice. However, 
you can implement functions to simulate worst case, as detailed in the work of 
Joseph Spencer and Gabino Alonso.2

Both .func binary(run,index) and .func wc(nom,tol,index) functions are needed 
to perform simulations according to the worst-case scenario, you need to place 
them on your LTspice schematic sheet as a SPICE directive.

.func binary(run,index) floor(run/(2**index))-2*floor(run/(2**(index+1)))

.func wc(nom,tol,index) if(run==numruns,nom,if(binary(run,index),nom*(1+
tol),nom*(1-tol)))

In order to use these functions, you need to:

	X Declare the number of simulation runs required to cover the maximum, 
minimum, and nominal for each component subject to worst-case analysis 
specified using numruns. The number of runs is determined by 2N +1, where N 
equals the number of different indexes linked to component tolerances. For 
Figure 21 this is 129 runs (taking run “0” into account), so the syntax is:

	 .param numruns = 129

	X Instead of regular value of component you must declare the  
following expression:

	 {wc(100R, 0.1, 0)}

Where:

	X 100R is the nominal value
	X 0.1 is the tolerance (+ or – 10% here)

	X 0 is the index of the parameter to vary, next component to vary will take index 1

Run the simulation circuit shown in Figure 21 with the expressions from the  
following table instead of static component values:

Table 2. Definition of Component Values and Tolerances 
with Worst-Case Method

Designator Range Syntax of Component Value (Worst Case)

R1 90 Ω to 110 Ω {wc(100, TolA, 0)}

C2 200 nF to 600 nF {wc(400 nF, TolB, 1)}

C3 200 nF to 600 nF {wc(400 nF, TolB, 2)}

L1 500 μH to 1500 µH {wc(1000 µH , TolC, 3)}

L2 0 nH to 500 nH {wc(250 nH, TolD, 4)}

L2 0 nH to 500 nH {wc(250 nH, TolD, 5)}

C6 0 pF to 200 pF {wc(100 pF, TolE, 6)}

Results are displayed in the waveform plot Figure 24. 

The MDI return loss mask limit line is added by editing the plot settings file as 
described previously.

Conclusion on the Worst-Case Analysis
Steve Knudtsen provides a concise overview3 of the benefits and limitations of 
using worst-case analysis for system design. 

The worst-case analysis is a common approach where component parameters 
are adjusted to their maximum tolerance limit. 

Limitations of a worst-case approach include results that do not match commonly 
observed results: to observe a system exhibiting worst-case performance would 
require the assembly of a very large number of systems. 

If systems are designed for worst-case conditions, then components selection 
can be expensive. 

However, using both worst case in conjunction with Monte Carlo or Gaussian simu-
lation can yield valuable system insights.

 

Figure 24. Differential return losses of a SPE termination: 128 runs of worst-case distrib-
uted parameters.

Worst-case analysis is best suited for a gross validation of behavior when simula-
tions are very long and when nominal behavior is already validated.

https://www.analog.com
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Gaussian Simulation
LTspice includes a built-in Gaussian function, where the centered values have a 
higher probability of occurring, this Gaussian function has a simple syntax.

{nominal_value*(1+gauss(tolerance/σ))}

Adjustments according to the standard deviation parameter σ of the Gaussian 
distribution can be performed using the following expressions in Table 3.

Table 3. Definition of Component Values and Tolerances 
in with Gaussian Distribution Method

Expression Used Fraction of Samples within Tolerance

{nom*(1+gauss(tol/1))} 68.2% (1σ)

{nom*(1+gauss(tol/2))} 95.4% (2σ)

{nom*(1+gauss(tol/3))} 99.7% (3σ)

{nom*(1+gauss(tol/4))} 99.99% (4σ)

Or using a more graphical representation:

Figure 25. Gaussian distribution of samples vs. σ.

For example, to create a 100 Ω resistor with 10% tolerance, and 4σ probability of 
value within tolerance you need to use the following syntax:

{100R*(1+gauss(ToIA/4))}

.param ToIA = 0.10

Figure 26 provides the result of 128 runs of the simulation provided in Figure 19, 
with Gaussian simulation provided in Figure 19, with Gaussian distributed param-
eters using 4σ.

Figure 26. Differential return losses of a SPE termination: 128 runs of Gaussian distributed 
parameters.

Conclusion on the Gaussian 
The Gaussian distribution is very often the most relevant way to simulate the 
variations of an electronic design.

The Gaussian distribution of parameters around a nominal value remains the 
most natural way to study the impact of tolerances.

Unfortunately, this comes at a price. To be exhaustive, you will need a large num-
ber of simulation runs.

This distribution will also pick values outside of the tolerance range, omitting the 
sorting and binning operations performed by component manufacturers.

Application to the Analysis of 10BASE-T1L link
Replacement of several field buses is possible using the 10BASE-T1L Ethernet 
standard. The same cable can be used for both traditional fieldbus and 10BASE-
T1L, which is a simple balanced copper pair used for full duplex communication 
and for powering the end-powered device (PD). While the same cable can be 
reused, the physical layer communication transceiver (PHY) and passive compo-
nents must change to meet the 10BASE-T1L standard.

Most validation of 10BASE-T1L signal integrity within LTspice can be performed 
with a similarly shaped signal.

Table 4. Range of Single-Pair Ethernet Depending on 
Transmit Signal Amplitude

Transmit Signal Amplitude5 Estimated Range

2.4 VPP 1000 m to 1700 m

1.0 VPP 200 m

The encoding used is PAM36, for pulse amplitude modulation 3 levels. Depending 
on the desired reach and capabilities of the endpoints, the transmit signal ampli-
tude can be adjusted to either 1 V or 2.4 V.

On the cable side, the signal rise is 53.33 ns for a –1 to +1 transition, and the fall 
time is the same.

Slew rate is deemed constant so 0 to 1,1 to 0, –1 to 0 and 0 to –1 should have a 
nominal transition time of 26.66 ns.

To generate such a test vector, we will use the code in Figure 27.P3

That will output a test vector of 5000 PAM3 symbols in a PWL format.

By feeding this test vector to our schematic, we are able to validate the various 
parameters such as minimal coupling, interwinding capacitance, and many more.

Figures 28, 29, and 30 show the transformer-based termination for a 10BASE-T1L 
link, the output of a PWL source voltage file, and an eye diagram display of the 
PWL voltage source and cable side differential voltage. This can be used for con-
formance testing to the 10BASE-T1L standard.
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Figure 28. Transformer-based termination with PAM3 PWL test vector.

// loop for every sample 
for (sample = DELAY ; sample < (NUMBER_OF_SAMPLES+DELAY) ; sample++) 
{ 
 // Compute a sample 
 previousLogicLevel = logicLevel; 
 logicLevel = (rand() % 3) ; 
 transition = abs((previousLogicLevel - logicLevel)); 
  
 switch (transition) 
 { 
  case 2  : // +1 to -1 transition or +1 to -1 transition 
   fprintf (pfile,"%E\t%5.2f\n",(sample*M_G_PERIOD),busvoltage[previousLogicLevel]); 
   fprintf (pfile,"%E\t%5.2f\n",(sample*M_G_PERIOD)+(M_G_RISE),busvoltage[logicLevel]); 
   
  break; 
   
  case 1 : // transition to nearby state ( -1 <-> 0 <-> 1 ) 
   fprintf (pfile,"%E\t%5.2f\n",(sample*M_G_PERIOD)+((1.0*M_G_RISE)/4.0), 
        busvoltage[previousLogicLevel]); 
   fprintf (pfile,"%E\t%5.2f\n",(sample*M_G_PERIOD)+((3.0*M_G_RISE)/4.0), 
        busvoltage[logicLevel]); 
  break; 
    
  case 0 : // no change in value 
   fprintf (pfile,"%E\t%5.2f\n",(sample*M_G_PERIOD),busvoltage[logicLevel]); 
  break; 
   
  default :  
  break; 
 } 
} 

Figure 27. An extract of the code used to generate PAM3 test vector.

https://www.analog.com
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Figure 29. An output of the PWL voltage source.

PWL Voltage Source 
Cable Side Differential Voltage

Figure 30. Eye diagram display of the PWL voltage source and cable side differential voltage.

Conclusion
LTspice is a powerful and free simulation tool, which can be used in conjunction 
with waveform generators using standard C and JavaScript code. The end result 
is a powerful wired communication signal integrity tool that can be used to save 
time with lab experiments, guide end product design, and reduce time to market 
for product developments. ADI and Würth Elektronik will provide this tool for engi-
neers to design their wired links and help with understanding new standards such 
as 10BASE-T1L SPE.
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