
1 | www.linear.com

wp004f

Getting Security Right in Wireless Sensor Networks

Getting Security Right in Wireless Sensor Networks
K. Pister, Chief Technologist, Dust Networks® Product Group

J. Simon, Systems Engineering Director, Dust Networks Product Group

WHITE PAPER | WP004

Fortunately, the literature on securing wireless
systems is readily available, and best prac-
tices are well known. Despite this knowledge,
the news is filled with reports documenting
successful attacks on wireless in general and
WSN in particular. Surprisingly, many prod-
ucts on the market do not embrace even the
most basic concepts of system security, and
many other products with well-intended se-
curity fall short of the mark. We document
here some of the common mistakes, and their
well-known solutions. Wireless security is not
trivial, but with rigorous attention to detail, it
is straightforward to build systems that are
not vulnerable to wireless attack.

BASICS

Security issues are not limited to wireless
systems. Indeed, Internet attacks big and
small are so common today that they are
barely newsworthy. There is a perception that
wireless systems are more vulnerable to at-
tack because anyone with the appropriate
radio can communicate with a wireless de-
vice from some distance. Of course, on the
Internet, anyone with a computer can launch
an attack from distances far longer than any
radio signal will propagate. The bottom line
is that all cyber-physical systems, whether
wired or wireless, require careful precautions
against attack.

Goals

The primary goals of security in WSN are to
provide:

n	 Confidentiality – Data being transported in
the network cannot be read by anyone but
the intended recipient.

n	 Integrity – Any message received is known
to be exactly the message that was sent,
without additions, deletions or modifica-
tions of the content.

n	 Authenticity – A message that claims to be
from a given source is, in fact, from that
source. If time is used as part of the au-
thentication scheme, authenticity also pro-
tects a message from being recorded and
replayed.

Confidentiality is required not only for securi-
ty-related applications, but also for common
everyday applications. For example, sensor
information regarding production levels or
equipment status may have some competi-
tive sensitivity – e.g., the National Security
Agency (NSA) doesn’t publish the power con-
sumption of their data centers because this
data might be used to estimate computing
resources. Sensor data should be encrypted
so that only the intended recipient can use it.

Both sensing and command information
needs to arrive intact. If a sensor says “the
tank level is 72cm" or the controller says “turn
the valve to 90 degrees,” it could be very bad
to lose one of the digits in either one of those
numbers.

The Internet of Things (IoT) is growing rapidly, and wireless sensor
networks (WSNs) are critical to extending the reach of the Inter-
net infrastructure to everything. WSNs are already in use in critical
monitoring and control applications around the planet. Any loss of
security in these systems may have real and direct consequences
on efficiency and safety.

Having confidence in the source of a message
is critical. Either of the two messages above
could have very bad consequences if they
were sent by a malicious attacker. An extreme
example is a message like “here’s a new pro-
gram for you to run.”

Consequences

The consequences of poor security are not al-
ways easy to anticipate. For example, a wire-
less temperature sensor or thermostat might
seem like a product with little need for secu-
rity. However, imagine a newspaper headline
describing how criminals used a radio to de-
tect the “vacation” setting on the thermostat,
and robbed those houses while the owners
were gone. The impact on customer loyalty,
let alone sales, would be dramatic. The safest
course is to encrypt all data.

In the early days of ZigBee, most networks
were run without any security. As a result, in
a multi-vendor interoperability demonstration
in front of many potential customers, a num-
ber of ZigBee networks failed dramatically
because they interpreted a command from a
different network to be a coordinator realign-
ment message, which told them to change
channels. There was no way for the ZigBee
networks to determine that the messages
were coming from a device that was not in
their network! This disastrous behavior was
not the result of an actual attack, but rather a
lack of authentication, which led to interpre-
tation of packets from a completely different
network.

In industrial process automation, the conse-
quences of an attack may be much more dire
than the loss of a customer. With faulty pro-
cess control information being delivered to
the control system, an attacker could cause
physical damage. For example, a sensor feed-
ing data to a motor or valve controller saying
that the motor speed or tank level is too low

2 | www.linear.com

wp004f

Getting Security Right in Wireless Sensor Networks

could result in a catastrophic failure, similar
to what happened to the centrifuges in the
Stuxnet attack [Stuxnet].

On a purely practical level, even a failed at-
tack or an academic revelation of a potential
weakness is likely to lead to a loss of sales,
urgent engineering effort, and a major public
relations challenge.

TOOLS

Fortunately, there are powerful tools for build-
ing secure, robust wireless communications
networks. It takes diligence and attention to
detail, but there is nothing fundamentally
hard about it.

Ciphers and Nonces

The most basic cryptographic tool is the
block cipher. As an example, AES-128 is a
particular block cipher that takes a 16-byte
message (the plaintext) together with a 128-
bit key, and generates a 16-byte encrypted
version of the message (the ciphertext). Any-
one with the same key can decrypt the cipher-
text to get back the plaintext. Anyone without
the key cannot get back the plaintext. The
advanced encryption standard (AES) cipher is
easy to implement in software, and is com-
monly available in hardware on many radio
and microprocessor chips. As far as anyone
knows, AES-128 is unbreakable – given the
ciphertext, there is absolutely no way to fig-
ure out the plaintext without the key. Indeed,
the same basic cipher was chosen by the US
National Security Agency for encryption of
top secret documents. In all of the reported
attacks on WSN security, no one has ever
claimed that the AES cipher provided the
weak link.

The only known attack on AES-128 is a so-
called “brute force” attack, meaning that the
attacker tries every possible key to determine
which one gives a reasonable message. Try-
ing every possible 128-bit key is a big task.
If you had one billion computers, and each
computer could check one billion keys every
second, and you ran all of those computers
for one billion years, you would only try about
0.1% of all of the possible 128-bit keys. There
are more than 300 billion billion billion billion
different 128-bit keys.

A block cipher lets the source encrypt a mes-
sage so that only the destination (with the
same key) can decrypt it. Of course, if the

messages are something simple like “turn
the light on” or “turn the light off,” then even
if the messages are encrypted to seemingly
meaningless strings of bits, anyone intercept-
ing a few messages will quickly figure out that
there are only two different messages. A so-
lution to this problem is to have a message
counter, and number each message sent.
Due to the nature of the cipher, any change in
the message plaintext will result in a different
ciphertext, and two messages sent at differ-
ent times, such as “Msg 1: turn the light on,”
and “Msg 53: turn the light on” will look com-
pletely different to anyone not in possession
of the key. As long as the message counter
never repeats, the ciphertext will also never
repeat. This concept of a message counter
that never repeats is called a nonce, for “num-
ber used once.”

Message Integrity Check

The message integrity check, or MIC (also
sometimes called a message authentication
code or MAC), is a cryptographic checksum
of the message. By sequentially running all of
the parts of a message through a block cipher
with a particular key, the sender of the mes-
sage creates a short encrypted summary of
the entire message, called the message integ-
rity check. This MIC is then appended to the
message. The receiver, using the same key,
can then perform the same function on the
message, calculate its own MIC, and verify
that the result matches the MIC that was re-
ceived. Any changes to the message, even a
single bit, will cause the MIC to change, and
therefore cause the message to be rejected by
the recipient.

Random Number Generators

A person can generate the encryption keys in
a WSN, but this is typically impractical and ul-
timately insecure, as we will see below. Ideally,
we’d ask computers to generate the keys for us.
We don’t want anyone to be able to guess the
keys, so we’d like them to be random, and that
requires a random number generator (RNG).
Usually people are happiest with computers
when they are completely deterministic, and ran-
dom behavior is frowned on. Making a comput-
er truly random is not a trivial task, and always
involves interaction with something non-digital.
Fortunately, radios are intrinsically non-digital,
and it has taken a century of progress from the
days of Marconi to get them to the point where
they deliver digital messages reliably. Any
well-designed WSN system will use the radio

or some other source of thermal noise as an
integral part of its RNG, and will generate truly
random numbers.

Access Control

Even a legitimately obtained device incor-
rectly deployed could confuse a control sys-
tem not expecting an additional input. Access
control lists (whitelists, blacklists) provide an
additional layer of control to ensure that un-
wanted devices cannot disrupt a network.

MISTAKES

Lack of Understanding
of the Problem

The single most common mistake in WSN
security is not appreciating the magnitude of
the problem until it is too late. Building and
deploying a wireless lighting control sys-
tem without security may not sound like a
problem until the local college students start
making light shows out of your customers’
office spaces.

Even those who realize that security is im-
portant may not appreciate the widespread
sophistication, software and hardware tools,
and skills that are available and regularly ap-
plied on the dark side of this conflict. Several
WSN companies tout their channel hopping
protocols as having some security benefit,
as if an attacker will not be able to buy a
multichannel receiver and transmitter. Oth-
ers seem to think that millions or billions of
keys is enough to prevent a successful attack,
when in fact even billions of billions is not
enough [DES-cracking1998].

Many people who understand that security is
good in principle are concerned that it will not
be practical, requiring too much computation
or battery power. Fortunately, all of the tech-
nologies described in this paper can be (and
are) used in wireless sensor nodes with very
limited computational resources running at mi-
crowatt power levels. Others are worried about
the “hassle” of security. As one concerned cus-
tomer once said, “the only tools our installers
know how to use are a sledgehammer and a
blowtorch.” Fortunately, most applications can
be deployed such that all of the security mech-
anisms are automated, requiring no human
interaction, and are completely transparent
to the end user. The sledgehammer-wielding
technicians now routinely install secure sensor
networks, whether they know it or not.

3 | www.linear.com

wp004f

Getting Security Right in Wireless Sensor Networks

Shared Keys and Software
Reverse Engineering

If a proper cipher has been chosen, and nonc-
es are used, the simplest system will use a
single shared key for all cryptographic opera-
tions. This approach is fine as long as the key
remains secret, but that is a difficult goal to
achieve.

An extreme example is the recently reported
vulnerability of a Bluetooth-controlled toilet/
bidet combo, in which the default pairing key
of all zeros was used [Trustwave]. This is real-
ly more an example of “no security” than poor
security, but illustrates the point that the best
protocols are no defense against poorly cho-
sen keys, or even a random key that becomes
widely known on the Internet. Bluetooth has
excellent security tools, but if you don’t use
them properly they are worthless once some-
one publishes your ill-advised product-wide
key on the web.

The next level up is to have a single unique
key for each network that is delivered or in-
stalled, or a new key each time a network is
formed. If you have a good random number
generator, and you control all of the hardware
in your network, then this approach is fine.
However, if any one node in the network is
compromised, then the entire network is open
to attack. If users are allowed to write their
own software on the nodes in the network,
then it is quite difficult to prevent a malicious
user from finding the network key.

Even if the node software is closed, it is quite
difficult to prevent an attacker from reading
out the program in a microprocessor if he
has possession of the hardware. The security
literature is filled with examples of such at-
tacks, which often go like this:

n	 Obtain a legal version of the hardware and
break into it to get the code.

n	 Reverse engineer the code to figure out
where the key is stored (this can be as
simple as comparing the code from two
different networks to see which bits are
different).

n	 Use this information to either figure out
how the key was calculated (see the Poor
Quality RNG section), or to make it much
quicker to get the key out of hardware cap-
tured from the actual network under attack.

Digital video disk (DVD) security has fallen
victim to such an attack. Both the original

DVD Content Scrambling System (CSS),
and the HD-DVD/Blu-Ray Advanced Access
Content System (AACS) were compromised
by hackers examining player code and expos-
ing and publishing several of the processing
keys protecting that material [AACS].

With very rare exceptions, you must assume
that a determined attacker will be able to ob-
tain your hardware, read out your code, and
reverse-engineer your algorithms and soft-
ware. As a result, a well-designed security
system must not depend on the algorithms
and software remaining secret and it must
not rely on the key or keys in any one device
remaining secret. An attacker in possession
of one of the network nodes must be as-
sumed to be able to gain complete control of
that node, and in a well-designed system the
compromise of a single node must not affect
security in the rest of the network.

The simplest solution to this reverse-engi-
neering problem is to ensure that every com-
munication session (or flow of data between
two endpoints) has its own unique keys that
are unknown to any other nodes in the net-
work. In this case, even a compromised node
in the network cannot snoop, manipulate, or
impersonate the data or commands from any
other node in the network.

Key Distribution

When appropriate protocols and ciphers
are used, a network with unique random
keys for each end-to-end session protects
the confidentiality, integrity, and authentic-
ity of network communication. However, key
distribution exposes vulnerabilities in some
systems. It is usually inconvenient to pre-
program every node in the network with all
of the unique keys that it will need for all fu-
ture sessions, so keys need to be distributed
after network formation. In some systems,
this has been done by sending the initial ses-
sion keys “in the clear” (not encrypted), un-
der the assumption that the network is then
only vulnerable to an attack for a brief period
of time during network formation. Unfortu-
nately, an attacker may well be able to set up
his snooping equipment and wait patiently for
a network reset, or in fact cause a network
reset by power cycling the network controller
or gateway, or through some other method.

A simple solution to this problem is to install
a single unique key on each node in the net-
work at manufacturing time, and have a single

trusted security manager in the network that
is given those keys, allowing a secure session
between each node and the security manager.
The security manager then generates the re-
quired keys for all other sessions, and sends
them via its secure channels to each of the
devices involved. Alternatively, there is anoth-
er suite of tools using public key infrastruc-
ture that provides similar functionality as well
as other benefits [PKI].

Poor Quality RNG

Among those who take security seriously,
perhaps the single most common mistake is
the use of a random number generator with
poor randomness. Even with all of the proper
protocols and ciphers, the network is only as
hard to attack as the keys are hard to guess.
Common mistakes here are the use of non-
cryptographic random number generators,
or cryptographic random number genera-
tors with seeds (initial values) that are non-
random.

Random numbers are useful in many different
applications in computer science, so many
operating systems have a “rand()” function
built in. For example, the original UNIX rand()
function maintained an internal 32-bit state,
and computed the next random number and
next state based on the current state. A user
could seed this RNG with a 32-bit number,
and then each call to rand() would generate
the next value in a sequence of four billion
values. It wasn’t a great RNG, but it was good
enough for most non-cryptographic applica-
tions. Today, however, it would be a simple
homework assignment to generate a table in
a single desktop computer that contained all
four billion possible random numbers, and
their location in the sequence. No amount of
randomizing the seed will help – the RNG it-
self is not sufficiently sophisticated.

Cryptographic RNGs use much more internal
state – typically at least 128 bits. With 128
bits, as discussed above, even billions of
computers operating for billions of years are
extremely unlikely to find a pattern in the se-
quence of numbers. The implementation and
test procedures of good cryptographic RNGs
are well documented [NIST].

Even the best RNG algorithm is only as ran-
dom as the seed it was provided. A com-
mon mistake in two WSN security systems
was pointed out by [IOActive], in which they
discovered by reverse engineering the soft-
ware binaries of both products that they were

4 | www.linear.com

wp004f

Getting Security Right in Wireless Sensor NetworksLinear Technology Corporation

1630 McCarthy Blvd. Milpitas, CA 95035-7417
Tel: 408 432-1900 • FAX: (408) 434-0507 • www.linear.com

Information furnished by Linear Technology Corporation is believed to be
accurate and reliable. However, no responsibility is assumed for its use.
Linear Technology Corporation makes no representation that the interconnect-
ion of its circuits as described herein will not infringe on existing patent rights. LT 1213 • PRINTED IN USA

 LINEAR TECHNOLOGY CORPORATION 2013

L, LT, LTC, LTM, Dust Networks, Linear Technology and the Linear
logo are registered trademarks and SmartMesh IP and the Dust
logo are trademarks of Linear Technology Corporation. All other
trademarks are the property of their respective owners.

using a very nonrandom seed. Both prod-
ucts used the time function (in seconds) as
the seed of their random number generator.
Since there are only a few tens of millions
of seconds per year, even a modest laptop
computer can generate all possible keys by a
quick search of the last few decades.

SECURE NETWORKS

While the news is full of examples of failed
wireless security, the world is filled with wire-
less networks that are in fact secure. Secure
networks just aren’t often newsworthy. As dis-
cussed above, a secure network requires both a
secure protocol, and a secure implementation.

Some examples of well-designed security pro-
tocols in WSN include the Wireless HART and
ISA100.11a industrial automation protocols,
and the ZigBee Smart Energy protocols. All of
these protocols have undergone extensive re-
view by security experts, and many implemen-
tations have sailed through similar review.

In particular, the Wireless HART protocol
is the basis of secure networks deployed in
critical infrastructure applications all over the
world, from the Arctic Circle to the Arabian
Desert. End users of this technology trust
WSN to supply process control information
reliably and confidentially between authenti-
cated endpoints. Customers in that industry,
as well as the vendors who supply them, have
confidence in their networks because of deep
analysis and testing of the protocols and im-
plementations that underlie them.

In WSN for industrial process automation,
it was understood from the beginning that
security is critical, and the protocols and
implementations reflect that reality. As new
protocols emerge, especially for the IoT,
some of the hard lessons will need to be
relearned in application environments where
it may not be as obvious that security is criti-
cal. As examples above have shown, there
are some who have not yet learned these
lessons. Fortunately, it is just as easy to pro-
vide “industrial quality” security in Internet

Protocol (IP) applications as in industrial ap-
plications. Examples include SmartMesh IP™
from Linear Technology and several of the
emerging IP standards.

CONCLUSION

The consequences of poor security in wireless
sensor networks are severe. It is unfortunate
that many products on the market today have
either not made a serious attempt at being se-
cure, or have failed in that effort. Fortunately,
using well-established principles, appropriate
protocols and ciphers, and the randomness
inherent in the physics of thermal noise, it is
possible to build systems that are both se-
cure and efficient. Many such protocols and
implementations exist, and the world is cov-
ered with secure wireless networks. Everyone
in the wireless sensor networking space will
benefit when all of the rest of the networks are
secure, too.

BIBLIOGRAPHY

[Stuxnet] http://spectrum.ieee.org/telecom/
security/the-real-story-of-stuxnet

[DES-cracking1998] Electronic Frontier Foun-
dation, “Cracking DES,” O’Reilly Media, 1998.

[Trustwave] https://www.trustwave.com/spi-
derlabs/advisories/TWSL2013-020.txt

[AACS] https://en.wikipedia.org/wiki/AACS_
encryption_key_controversy

[PKI] https://en.wikipedia.org/wiki/Public_
key_infrastructure

[NIST] http://csrc.nist.gov/publications/fips/
fips140-2/fips1402annexc.pdf

[IOActive] Lucas Apa, Carlos Hollman, “Com-
promising Industrial Facilities from 40 miles
Away," Blackhat 2013.

http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
http://spectrum.ieee.org/telecom/security/the-real-story-of-stuxnet
https://www.trustwave.com/spiderlabs/advisories/TWSL2013-020.txt
https://www.trustwave.com/spiderlabs/advisories/TWSL2013-020.txt
https://en.wikipedia.org/wiki/AACS_encryption_key_controversy
https://en.wikipedia.org/wiki/AACS_encryption_key_controversy
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexc.pdf
http://csrc.nist.gov/publications/fips/fips140-2/fips1402annexc.pdf

	Basics
	Goals
	Consequences

	Tools
	Ciphers and Nonces
	Message Integrity Check
	Random Number Generators
	Access Control

	Mistakes
	Lack of Understanding of the Problem
	Shared Keys and Software Reverse Engineering
	Key Distribution
	Poor Quality RNG

	Secure Networks
	Conclusion
	Bibliography

