

Maxim > Design Support > Technical Documents > Application Notes > Automotive > APP 1142 Maxim > Design Support > Technical Documents > Application Notes > Display Drivers > APP 1142

Keywords: GPIO, port expanders, static LED, LED display drivers, LED drivers, display drivers, SPI, I2C, serial, blink, 3V

APPLICATION NOTE 1142

Experimenting with the MAX6956 and MAX6957 SPI and I²C GPIO and LED Display Drivers from a PC

Jun 28, 2002

Abstract: This application note describes a PC program, downloadable free, to assist evaluation of the MAX6956 and MAX6957 LED display drivers and GPIO (port expanders).

The MAX6956 and MAX6957 are versatile 28-segment LED display drivers which allow any of the outputs to be configured as general purpose inputs/outputs (GPIO). Control is made through a high-speed SPI[™] (MAX6957) or I²C (MAX6956) serial interface.

This application note describes a utility program which allows a MAX6957 or MAX6956 driver to be controlled from a PC. The utility can be used as a standalone to help an engineer become familiar with the registers and functions of the drivers. Moreover, it can be used to 'prove' an application board prototype by directly controlling the MAX6957 or MAX6956 registers before the equipment's software is designed.

Requirements

A PC running Windows® 95, 98, 98SE, ME, NT, or 2000 with a parallel printer port configured for either LPT1 or LPT2.

Description

The utility is a Visual Basic 5 program called MAX6957.EXE which requires the standard Visual Basic run time library MSVBVM50.DLL in order to run at all. The program uses the DriverLINX[™] freeware parallel port driver DLPortIO.DLL which provides the Win32 DLL hardware I/O functions not available as standard in Visual Basic. Windows NT and 2000 users also require the DLPortIO.SYS kernel mode driver. Both of these drivers are copyright Scientific Software Tools, Inc. (http://www.driverlinx.com).

Installation

To install to a Windows 95, 98, 98SE, ME platform, download the MAX6956-57.EXE file. This is a WinZIP self-extracting archive that contains ReadMe.txt, ReadMeSST.txt, MAX6957.EXE, DLPortIO.DLL, and MSVBVM50.DLL. The default download directory is C:\MAX6956. MSVBVM50.DLL may be deleted if the library is already registered on the computer.

To install to a Windows NT or 2000 platform, download the MAX6956-NT.EXE file. This is a WinZIP self-

extracting archive that contains ReadMe.txt, ReadMeSST.txt, MAX6956.EXE, PORT95NT.EXE, and MSVBVM50.DLL. The default download directory is C:\MAX6956. PORT95NT.EXE is the install program for the DriverLINX drivers which installs and registers the DLPortIO.DLL library and DLPortIO.SYS driver. PORT95NT.EXE can be deleted after installation. Windows 95, 98, 98SE, ME users can also use this installation procedure if they wish.

Source Code

The source code for this application note is available at http://www.maximintegrated.com/products/display/software/.

Connecting a MAX6956 or MAX6957 to the Parallel Port

This utility uses 3 of the 8 parallel port printer output lines to simulate SPI serial interface activity, and another 2 output lines to simulate I²C serial interface activity. Parallel port control input lines are used to read back SPI data, I²C data, and interrupt status. Multiple (up to 16, daisy-chained) MAX6957s and/or multiple (up to 16, configured with different I²C addresses) MAX6956s may be operated at once. Either the LPT1 or LPT2 port may be selected from the software. The port can be a standard, ECP, or EPP type. The port connections are shown in **Figure 1**.

Figure 1. The MAX6956 and MAX6957 connections to the parallel port.

The program brings up 4 windows on startup. These are the main control, intensity control, I/O control,

and segment control windows. The register settings on start-up mirror the register power-up conditions of the MAX6956 and MAX6957.

The main control is shown in **Figure 2** below. The 'Driver type' radio buttons select whether the software will transmit to MAX6957 (using the SPI connection) or the MAX6956 (using the I²C connection).

Cascaded SPI Current (Number of D	Driver Configure Driver is 1 1	ation	ible globel driver write ible euto-increment it serial interface	Driver type ○ MAX6956 @ MAX6957	Port Address C LPT1 - 378h C LPT2 - 278h
Configuration F Data Change C M bit set G M bit clear Data change disabled	Register flags Intensity C I bit set C I bit clear Intensity is Global	Shutdown C S bit set S bit clear Shutdown mode	Interrupt Pin High Global Intensity Configuration	Interrupt Bit High 00 • • • • • 00 00000000	ADDR: Write Input Mask 01 Write Global Intensity 02 Write Configuration 0- Write Test Mode 02
Automatic Upd	ate controls ate	Reading Driver 1		gmentinputMaskb 0 □ 29 □ 28 □	its 27 □ 26 □ 25 □ 24
Abo <u>u</u> t	Utility	Port Connections	and Help		Exit

Figure 2. Program display on startup.

In SPI mode, the software controls up to 16 MAX6957 drivers. The drivers are presumed to be cascaded, (i.e., the DOUT pin of the first MAX6957 connects to the DIN pin of the second MAX6957, whose DOUT pin connects to the DIN pin of the third MAX6957, and so on). The total number of MAX6957 devices is set by the 'Number of Drivers' slider. When this is set to more than 1, the 'Enable global driver write' and 'Enable auto-increment' check boxes are available. When 'Enable global driver write' is clear, only the MAX6957 driver selected by the 'Current Driver' slider is written to when a write command is selected - the others receive the no-op instruction. When 'Enable global driver write' is checked, all the MAX6957 drivers are written to with the same data. When 'Enable auto-increment' is checked, the current driver number is automatically incremented after each write action. This allows the user to quickly send the same data for a series of MAX6957 drivers.

The SPI interface connection to the parallel port can be tested with the 'Test Stream' facility which can be found under 'Port Connections and Help...' when the program is running. The 'Test Stream' facility transmits the no-op instruction continuously to the MAX6957(s) (as set by the 'Number of Drivers' slider) allowing the interface connections to be verified without affecting register contents.

In I²C mode, the software controls up to 16 MAX6956 drivers. The first driver is presumed to be set to address 1000000x, with the addresses of subsequent devices increasing to 1001111x for the last device. To access, for example, a single MAX6956 driver at address 1001111x, simply set the 'Number of Drivers' slider to 16 and then the 'Current Driver' slider to 16, address 1001111x. The main form in I²C mode is shown in **Figure 3**.

Multiple I ^e C Dri Current Addrs Number of Dr	ver Configuratio	n with base addre	ess 1000000x able globe driverwrite able gutoring ement at serial interface	Driver type (* MAX6956) (* MAX6957)	C LPT2-278h
- Configuration F - Data Change - M bit set	Register flags	Shutdown C S bit set	Interrupt Pin High	Interrupt Bit High	ADDRS Write Input Mask 08
 M bit clear Data change disabled 	C I bit clear Intensity is Global	© S bit clear Shutdown mode	Global Intensity C Configuration C Test Mode C	00 100000000 00 00000000000000000000000	Write Global Intensity 02 Write Configuration 04 Write Test Mode 07
Automatic Upd	ate controls ate Readir	ig Addrs 1000000x	Seg	mentinput Mask b C 29 T 28 T	its 27 □ 26 □ 25 □ 24
Abo <u>u</u> t	Utility	Port Connections	and Help		Exit

Figure 3. I²C program display.

The I²C interface connection to the parallel port can be tested with the 'Test Stream' facility which can be found under 'Port Connections and Help...' when the program is running. The 'Test Stream' facility transmits the no-op instruction continuously to all MAX6956(s) (as set by the 'Number of Drivers' slider) allowing the interface connections to be verified without affecting register contents.

The 'Fast serial interface' check box sets the serial interface speed for both SPI and I²C interface types. When checked, serial interface runs at machine-dependent full speed up to 1 Mbits/sec; unchecked, the speed is limited to 500 bits/sec maximum. The slow speed may be useful when connecting over very long cables.

The program will normally only communicate with the target driver (or drivers) when a 'Write' or 'Read' button is pressed. However, the program attempts to monitor an interrupt output pin presumed to be connected to the parallel port pin 13. This is displayed on the main window and displays status as High or Low.

The 'Automatic Update control' button, when checked, makes the program continually poll all 28 port input registers and the interrupt register bit. The reading rate depends on the setting of the 'Fast serial interface' check box, and is many times a second (Fast) or every many seconds (Slow). Note: slow mode is *very* slow! The 'Reading driver x' slider allows the user to set the device being automatically read independently to the driver(s) accessible through the 'Current driver' control.

The main window is the route to Exit the program. The Exit button, or pressing the Esc key on the main window, closes all 4 windows. Pressing the Esc key in one of the other 3 windows takes the user to the main window; therefore, pressing the Esc key twice will close the program quickly. Before closing, the program stores the last settings for device configuration in a file called MAX6956.ini in the same directory that the program was executed from. Nothing is written to Windows registry. The settings includes the positions of the 4 windows, and the interface settings on the main window. If the MAX6956.ini doesn't exist then it is created; otherwise it is overwritten. To restore program default settings, or if the MAX6956.ini is corrupted, simply delete the MAX6956.ini file.

Figures 4, 5, and 6 show snapshots of the other three windows.

Intensity Configura	tion							
		AL	DDRS				AD	DRS
Intensity 054 00	4 4	Write Intensity	12	Intensity 132 00	18 1		Write Intensity	19
	6 1	Write Intensity			20 1		Write Intensity	100/0
Intensity 076 00	7 .	• 076	13	Intensity 154 00	21 •	•	154	1A
Intensity 098 00	8 1	Write Intensity	14	Intensity 176 00	22 •	•	Write Intensity	18
	9 1	► 038		monory reque	23 4	•	176]
Intensity IIBA 00	10 1	Write Intensity	15	Intensity 198 00	24 •	•	Write Intensity	110
mensity services	11 •	• OBA	100	including root ee	25 1		198	
Intensity BDC 00	12 .	Write Intensity	16	Intensity 1BA	26 1	•	Write Intensity	10
mensity up of 00	13 •) ODC		menany reaction	27 •		1BA	1.0
Intensity DEE 00	14 1	Write Intensity	17	Intensity 1DC 00	28 •	2	Write Intensity	1E
intensity of L 100	15 •	OFE		menany reefee	29 1		1DC	
Intensity 110 00	16 1	Write Intensity	1 10	Intensity IEE 00	30 1	*	Write Intensity	15
	17 1	• 110	1.0	Intensity IT L 1	31 1	•	1FE]"

Figure 4. Intensity configuration window.

Input and Output	Configuration			
Segment 7 C LED driver C Output C Input C Input & pullup	Segment 6 C LED driver C Output C Input C Input & pullup	Segment 5 C LED driver C Output C Input C Input & pullup	Segment 4 C LED driver C Output C Input C Input & pullup	AA HEX 10101010 BINARY Write Config 7 - 4, Addrs 09
Segment 11 C LED driver C Output Input C Input & pullup	Segment 10 C LED driver C Output Input Input & pullup	Segment 9 C LED driver C Output C Input C Input & pullup	Segment 8 C LED driver C Output C Input C Input & pullup	AA HEX 10101010 BINARY Write Config 11 - 8, Addrs 0A
Segment 15 C LED driver C Output C Input C Input & pullup	C LED driver C UED driver C Output C Input C Input & pullup	C LED driver C UED driver C Output Input C Input & pullup	C LED driver C UED driver Output Input Input pullup	AA HEX 10101010 BINARY Write Config 15-12, Addrs 0B
Segment 19 C LED driver C Output C Input C Input & pullup	Segment 18 C LED driver C Output Input Input & pullup	Segment 17 C LED driver C Output G Input C Input & pullup	Segment 16 C LED driver C Output G Input C Input & pullup	AA HEX 10101010 BINARY Write Config 19 - 16, Addrs 0C
Segment 23 C LED driver C Output C Input C Input & pullup	Segment 22 C LED driver C Output C Input C Input & pullup	Segment 21 C LED driver C Output G Input C Input & pullup	Segment 20 C LED driver C Output Input C Input & pullup	AA HEX 10101010 BINARY Write Config 23-20, Addrs 0D
Segment 27 C LED driver C Output G Input C Input & pullup	Segment 26 C LED driver C Output Input C Input & pullup	Segment 25 C LED driver C Output C Input C Input & pullup	Segment 24 C LED driver C Output Input Input & pullup	AA HEX 10101010 BINARY Write Config 27 - 24, Addrs 0E
Segment 31 C LED driver C Output G Input C Input & pullup	Segment 30 C LED driver C Output C Input C Input & pullup	Segment 29 C LED driver C Output C Input Input & pullup	Segment 28 C LED driver C Output C Input C Input & pullup	AA HEX 10101010 BINARY Write Config 31 - 28, Addrs 0F

Figure 5. I/O configuration window.

REGISTER WRI	TE A	DDP	as		REA	A Q	DDR	S Al	DDR
Segment 0	Write Seg 0	20			?	Read Seg 0	A	Read 7-0	C0
Segment 1	Write Seg 1	21			?	Read Seg 1	AI	Read 8 - 1	C1
Segment 2 0	Write Seg 2	22			?	Read Seg 2	AZ	Read 9-2	C2
Segment 3	Write Seg 3	23	A	DDRS	?	Read Seg 3	A3	Read 10-3	C3
Segment 4	Write Seg 4	24	Write 11 - 4	44	?	Read Seg 4	A4	Read 11 - 4	C4
Segment 5	Write Seg 5	25	Write 12 - 5	45	?	Read Seg 5	A5	Read 12-5	C5
Segment 6	Write Seg 6	26	Write 13 - 6	46	?	Read Seg 6	A6	Read 13-6	C6
Segment 7	Write Seg 7	27	Write 14-7	47	?	Read Seg 7	A7	Read 14-7	C7
Segment 8 0	Write Seg 8	28	Write 15 - 8	48	?	Read Seg 8	A8	Read 15-8	C8
Segment 9	Write Seg 9	29	Write 16 - 9	49	2	Read Seg 9	A9	Read 16-9	C9
Segment 10	Write Seg 10	2A	Write 17 - 10	4A	?	Read Seg 10	AA	Read 17-10	CA
Segment 11	Write Seg 11	28	Write 18 - 11	48	?	Read Seg 11	AB	Read 18 - 11	CB
Segment 12 0	Write Seg 12	20	Write 19 - 12	4C	?	Read Seg 12	AC	Read 19-12	CC
Segment 13	Write Seg 13	2D	Write 20 - 13	4D	?	Read Seg 13	AD	Read 20 - 13	CD
Segment 14 0	Write Seg 14	2E	Write 21 - 14	4E	2	Read Seg 14	AE	Read 21 - 14	CE
Segment 15 0	Write Seg 15	2F	Write 22 - 15	4F	?	Read Seg 15	AF	Read 22 - 15	CF
Segment 16 0	Write Seg 16	30	Write 23 - 16	50	?	Read Seg 16	80	Read 23 - 16	D
Segment 17	Write Seg 17	31	Write 24 - 17	51	?	Read Seg 17	81	Read 24-17	D1
Segment 18	Write Seg 18	32	Write 25 - 18	52	2	Read Seg 18	82	Read 25 - 18	D2
Segment 19 0	Write Seg 19	33	Write 26 - 19	53	?	Read Seg 19	83	Read 26 - 19	03
Segment 20 0	Write Seg 20	34	Write 27 - 20	54	?	Read Seg 20	84	Read 27 - 20	04
Segment 21	Write Seg 21	35	Write 28 - 21	55	?	Read Seg 21	85	Read 28 - 21	D5
Segment 22 0	Write Seg 22	36	Write 29 - 22	56	2	Read Seg 22	86	Read 29 - 22	D6
Segment 23 0	Write Seg 23	37	Write 30 - 23	57	?	Read Seg 23	87	Read 30 - 23	07
Segment 24	Write Seg 24	38	Write 31 - 24	58	2	Read Seg 24	88	Read 31 - 24	08
Segment 25	Write Seg 25	39	Write 32 - 25	59	?	Read Seg 25	89	Read 32 - 25	D9
Segment 26	Write Seg 26	3A	Write 33-26	5A	?	Read Seg 26	BA	Read 33 - 26	DA
Segment 27	Write Seg 27	38	Write 34 - 27	58	2	Read Seg 27	88	Read 34-27	DB
Segment 28	Write Seg 28	30	Write 35 - 28	5C	?	Read Seg 28	BC	Read 25 - 28	DC
Segment 29	Write Seg 29	3D	Write 36 - 29	5D	?	Read Seg 29	BD	Read 26 - 29	DD
Segment 30 0	Write Seg 30	3E	Write 37 - 30	5D	?	Read Seg 30	BD	Read 37 - 30	DE
Segment 31	Write Seg 31	3F	Write 38 - 31	5D	2	Read Seg 31	BF	Read 38 - 31	DF

Figure 6. Segment registers window.

Windows is a registered trademark and registered service mark of Microsoft Corporation.

MAX6956 2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port LED Free Samples Display Driver and I/O Expander	Related Parts		
	MAX6956	2-Wire-Interfaced, 2.5V to 5.5V, 20-Port or 28-Port LED Display Driver and I/O Expander	Free Samples

MAX6957	4-Wire-Interfaced, 2.5V to 5.5V, 20-Port and 28-Port LED	Free Samples
	Display Driver and I/O Expander	

More Information

For Technical Support: http://www.maximintegrated.com/support For Samples: http://www.maximintegrated.com/samples Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 1142: http://www.maximintegrated.com/an1142 APPLICATION NOTE 1142, AN1142, AN 1142, APP1142, Appnote1142, Appnote 1142 Copyright © by Maxim Integrated Products Additional Legal Notices: http://www.maximintegrated.com/legal