
Maxim > Design Support > Technical Documents > Application Notes > Video Circuits > APP 4184

Keywords: Video, On-Screen Display, Security Cameras, DVRs, Switchers, Composite Video, Video Switch Matrix,
CCTV Cameras, OSD, Video Monitors, Video Recorders, PTZ Cameras, SPI Interface, Software Routines,
MAX7456, Monochrome OSD, Code for MAX7456

APPLICATION NOTE 4184

C-Code Software Routines for Using the SPI Interface
on the MAX7456 On-Screen Display
By: David Fry, Strategic Applications Engineering Manager
Mar 31, 2008

Abstract: The MAX7456 on-screen display (OSD) generator has an SPI™-compatible control interface. This
application note describes the operation of the SPI interface. The article also includes C-code that a microcontroller
can use to control the part through a bit-banged SPI interface.

The MAX7456 Serial Interface
The MAX7456 single-channel, monochrome on-screen display (OSD) generator is preloaded with 256 characters
and pictographs, and can be reprogrammed in-circuit using the SPI port. The SPI-compatible serial interface
programs the operating modes, the display memory, and the character memory. Read capability permits both write
verification and reading of the Status (STAT), Display Memory Data Out (DMDO), and Character Memory Data Out
(CMDO) registers. For detailed information on the MAX7456 registers and memory organization, refer to the
product data sheet and to application note 4117, "Generating Custom Characters and Graphics by Using the
MAX7456's Memory and EV Kit File Formats."

The MAX7456 supports interface clocks (SCLK) up to 10MHz. Figure 1 illustrates writing data and Figure 2
illustrates reading data from the device.

To write to a register, bring active-low CS low to enable the serial interface. Data is clocked in at SDIN on the
rising edge of SCLK. When active-low CS transitions high, data is latched into the input register. If active-low CS
goes high in the middle of a transmission, the sequence is aborted (i.e., data is not written to the registers). After
active-low CS is brought low, the device waits for the first byte to be clocked into SDIN before it can identify the
type of data transfer being executed.

To read a register, bring active-low CS low as described above. The address is clocked in at SDIN on the rising
edge of SCLK, as described above. The data is then clocked out at SDOUT on the falling edge of SCLK.

The SPI commands are 16 bits long; the 8 most significant bits (MSBs) represent the register address and the 8
least significant bits (LSBs) represent the data (Figures 1 and 2). There are two exceptions to this arrangement:

1. Autoincrement write mode, used for display memory access, is a single 8-bit operation (Figure 3). The start
address must be set before the data is written. When performing the autoincrement write for the display
memory, the 8-bit address is internally generated; only 8-bit data is required at the serial interface, as shown
in Figure 3.

Page 1 of 12

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/26/c/Video%20Circuits#c26
http://www.maximintegrated.com/max7456
http://www.maximintegrated.com/an4117
http://www.maximintegrated.com/an4117

2. Reading character data from the Display Memory, when in 16-bit Operation Mode, is a 24-bit operation (8-bit
address + 16-bit data).

When performing a read operation, only an 8-bit address is required, as shown in Figure 2.

Figure 1. Write operation.

Figure 2. Read operation.

Figure 3. Write operation in autoincrement mode.

C-Code Routines
The C-code described below has been compiled for the MAXQ2000 microcontroller, which is used on the
MAX7456 evaluation (EV) kit. The complete set of software routines is available in this application note. The
routines are self-documenting, so little additional description is provided. The C-Code below is also available in the
following files: spi.c and MAX7456.h

The code uses the standard nomenclature for the SPI lines. The MAXQ2000 processor is the SPI master and the
MAX7456 is the SPI slave.

Page 2 of 12

http://www.maximintegrated.com/maxq2000
http://www.maximintegrated.com/max7456evkit
http://www.maximintegrated.com/tools/other/appnotes/4184/4184_spi.c
http://www.maximintegrated.com/tools/other/appnotes/4184/4184_max7456.h

CS is the same as is used in the MAX7456 data sheet.
SDIN is referred to as MOSI (master out slave in).
SDOUT is referred to as MOSI (master in slave out).
SCLK is referred to as CK.

The prefix SPI_ is used on all lines.

Data Structures
The data structure shown below is used to access data directly or bit by bit. This is used to access the pins for the
SPI port individually. (C++ and some newer C compilers support the bit-field union/struct syntax.)

/* Port 5 Output Register */
__no_init volatile __io union
{
 unsigned char PO5;
 struct
 {
 unsigned char bit0 : 1;
 unsigned char bit1 : 1;
 unsigned char bit2 : 1;
 unsigned char bit3 : 1;
 unsigned char bit4 : 1;
 unsigned char bit5 : 1;
 unsigned char bit6 : 1;
 unsigned char bit7 : 1;
 } PO5_bit;
}

This code assigns a single byte to PO5, which is the address of the microcontroller's output port. It then assigns
another byte to the same memory address that can be accessed bit by bit.

Therefore, the port can be addressed directly by using commands like:

PO5 = 0x10;

Or bit by bit by using commands like:

PO5_bit.bit4 = 1;

This structure can be customised if the code is used on different processors.

If using an older C compiler which does not support the bitfield width specifier, the bitwise boolean operators can
be used to set and clear bits:

/* Portable bit-set and bit-clear macros. */
#define BIT_SET(sfr,bitmask) sfr |= (bitmask)
#define BIT_CLR(sfr,bitmask) sfr &=~ (bitmask)
#define BIT0 0x01
#define BIT1 0x02
#define BIT2 0x04
#define BIT3 0x08
#define BIT4 0x10
#define BIT5 0x20
#define BIT6 0x40
#define BIT7 0x80
example: BIT_SET(PO5,BIT0); BIT_CLR(PO5,BIT6);

Page 3 of 12

Macros
There is a simple tip to make the routines more mobile: use macros to define the controller pin assignments, as
shown below.

#define SPI_CS PO5_bit.bit4 // PO5_bit.bit4 =
active-low CS—chip select
#define SPI_MOSI PO5_bit.bit5 // PO5_bit.bit5 = MOSI
—master out slave in,
 // data to MAX7456
#define SPI_MISO PI5_bit.bit7 // PO5_bit.bit7 = MISO
—master in slave out,
 // data from MAX7456
#define SPI_CK PO5_bit.bit6 // PO5_bit.bit6 = SCK
- SPI clock

Using these macros and the data structure above, one can set and reset each pin in an IO port individually with
commands such as:

SPI_CS = 1;

Changing the macros will move the pins around. This is useful if the code is to be used in different designs that
assign different pins for the SPI port, or if the pins need to be reassigned for better PCB routing.

Code for a Single-Byte Write
The code for a single-byte write operation (Figure 1) is shown below. If one can guarantee that the active-low CS
and CK lines are at the correct state on entry, the first two instructions can be removed.

The routine first sends the address followed by the data. Two loops are used for this. It is possible to simplify the
routine by using a single loop and a 16-bit data store. Rotating a 16-bit "int" takes longer than rotating an 8-bit
"char" on the MAXQ2000 microcontroller, so a trade-off has been made.

/**
 * spiWriteReg
 *
 * Writes to an 8-bit register with the SPI port

**/

void spiWriteReg(const unsigned char regAddr, const unsigned char regData)
{

 unsigned char SPICount; // Counter used to
clock out the data

 unsigned char SPIData; // Define a data
structure for the SPI data

 SPI_CS = 1; // Make sure we
start with active-low CS high
 SPI_CK = 0; // and CK low

 SPIData = regAddr; // Preload the data
to be sent with Address
 SPI_CS = 0; // Set active-low CS
low to start the SPI cycle
 // Although SPIData
could be implemented as an "int",
 // resulting in one
 // loop, the routines
run faster when two loops
 // are implemented

Page 4 of 12

with
 // SPIData
implemented as two "char"s.

 for (SPICount = 0; SPICount < 8; SPICount++) // Prepare to clock
out the Address byte
 {
 if (SPIData & 0x80) // Check for a 1
 SPI_MOSI = 1; // and set the MOSI
line appropriately
 else
 SPI_MOSI = 0;
 SPI_CK = 1; // Toggle the clock
line
 SPI_CK = 0;
 SPIData <<= 1; // Rotate to get the
next bit
 } // and loop back to
send the next bit

 // Repeat for the
Data byte
 SPIData = regData; // Preload the data
to be sent with Data
 for (SPICount = 0; SPICount < 8; SPICount++)
 {
 if (SPIData & 0x80)
 SPI_MOSI = 1;
 else
 SPI_MOSI = 0;
 SPI_CK = 1;
 SPI_CK = 0;
 SPIData <<= 1;
 }
 SPI_CS = 1;
 SPI_MOSI = 0;
}

Code for a Byte-Read Operation
The code for a byte-read operation (Figure 2) is shown below. It is similar to the routine above. The address is first
sent, and the data is read back by toggling the clock and then reading in the data from the MISO line.

/**
 * spiReadReg
 *
 * Reads an 8-bit register with the SPI port.
 * Data is returned.

**/

unsigned char spiReadReg (const unsigned char regAddr)
{

 unsigned char SPICount; // Counter used to
clock out the data

 unsigned char SPIData;

 SPI_CS = 1; // Make sure we start
with active-low CS high
 SPI_CK = 0; // and CK low
 SPIData = regAddr; // Preload the data
to be sent with Address and Data

 SPI_CS = 0; // Set active-low CS
low to start the SPI cycle
 for (SPICount = 0; SPICount < 8; SPICount++) // Prepare to clock
out the Address and Data

Page 5 of 12

 {
 if (SPIData & 0x80)
 SPI_MOSI = 1;
 else
 SPI_MOSI = 0;
 SPI_CK = 1;
 SPI_CK = 0;
 SPIData <<= 1;
 } // and loop back to
send the next bit
 SPI_MOSI = 0; // Reset the MOSI
data line

 SPIData = 0;
 for (SPICount = 0; SPICount < 8; SPICount++) // Prepare to clock
in the data to be read
 {
 SPIData <<=1; // Rotate the data
 SPI_CK = 1; // Raise the clock to
clock the data out of the MAX7456
 SPIData += SPI_MISO; // Read the data bit
 SPI_CK = 0; // Drop the clock
ready for the next bit
 } // and loop back
 SPI_CS = 1; // Raise CS

 return ((unsigned char)SPIData); // Finally return the
read data
}

Code for a Byte-Write Operation Using Autoincrement
The code for a byte-write operation using the autoincrement function (Figure 3) is shown below. It, too, is similar to
the single-byte write routine above. The address is first sent, and the data is read back by toggling the clock and
then reading in the data from the MISO line.

/**
 * spiWriteRegAutoIncr
 *
 * Writes to an 8-bit register with the SPI port using the MAX7456's autoincrement
mode

**/

void spiWriteRegAutoIncr(const unsigned char regData)
{
 unsigned char SPICount; // Counter used to
clock out the data

 unsigned char SPIData; // Define a data
structure for the SPI data.

 SPI_CS = 1; // Make sure we start
with active-low CS high
 SPI_CK = 0; // and CK low
 SPIData = regData; // Preload the data
to be sent with Address and Data

 SPI_CS = 0; // Set active-low CS
low to start the SPI cycle
 for (SPICount = 0; SPICount < 8; SPICount++) // Prepare to clock
out the Address and Data
 {
 if (SPIData & 0x80)
 SPI_MOSI = 1;
 else
 SPI_MOSI = 0;
 SPI_CK = 1;

Page 6 of 12

 SPI_CK = 0;
 SPIData <<= 1;
 } // and loop back to
send the next bit
 SPI_MOSI = 0; // Reset the MOSI
data line
}

Code to Write to the Display Memory Using Autoincrement
The following routine uses the autoincrement function to write to the display memory. The code uses a global
variable array called "data". It is defined below:

extern volatile unsigned char data[DATA_BUF_LENGTH];

DATA_BUF_LENGTH = 968

When the routine is called, data[] contains the display memory to be written as below:

data[0] = ignored (contains a command byte used by the EV kit GUI software)
data[1] = character byte 1
data[2] = attribute byte 1
data[3] = character byte 2
data[4] = attribute byte 2
etc.

Autoincrement mode is terminated by writing 0xFF. Hence, character 0xFF cannot be written to the display in this
mode. If this is required, a single-byte write can be used.

/**
 * spiWriteCM
 *
 * Writes to the Display Memory (960 bytes) from "data" extern.
 * 960 = 16 rows × 30 columns × 2 planes {char vs. attr} screen-position-indexed
memory

**/

void spiWriteCM() // On entry: global
data[1..960]
 // contains char+attr
bytes
 // (optionally
terminated by 0xFF data)
 // First, write
data[1,3,5,...] Character plane;
 // MAX7456
WriteReg(0x05,0x41)
 // "Character Memory
Address High";
 // 0x02:Attribute
bytes;
 // 0x01:character
memory address msb
{
 volatile unsigned int Index = 0x0001; // Index for lookup
into
 // data[1..960]
 spiWriteReg(DM_ADDRH_WRITE,0x00); // initialise the
Display Memory high-byte
 spiWriteReg(DM_ADDRL_WRITE,0x00); // and the low-byte
 spiWriteReg(DM_MODE_WRITE ,0x41); // MAX7456
WriteReg(0x04,0x41) "Display Memory Mode";
 // 0x40:Perform 8-bit
operation; 0x01:AutoIncrement

 Do // Loop to write the

Page 7 of 12

character data
 {
 if (data[Index] == 0xFF) { // Check for the
break character
 break; } // and finish if
found
 spiWriteRegAutoIncr(data[Index]); // Write the
character
 Index += 2; // Increment the
index to the next character,
 // skipping over the
attribute
 } while(Index < 0x03C1); // 0x03C1 = 961
 // and loop back to
send the next character

 spiWriteRegAutoIncr(0xFF); // Write the "escape
character" to end AutoIncrement
 // mode

 spiWriteReg(DM_ADDRH_WRITE,0x02); // Second, write
data[2,4,6,...]
 // Attribute plane;
MAX7456
 //
WriteReg(0x05,0x41)
 // "Character Memory
Address High";
 // 0x02:Attribute
bytes; 0x01:character memory address
 // msb

 spiWriteReg(DM_ADDRL_WRITE,0x00);
 spiWriteReg(DM_MODE_WRITE,0x41); // MAX7456
WriteReg(0x04,0x41) "Character Memory
 // Mode";
0x40:Perform 8-bit operation; 0x01:Auto-
 // Increment

 Index = 0x0002;
 do
 {
 if (data[Index] == 0xFF)
 break;
 spiWriteRegAutoIncr(data[Index]);
 Index += 2;
 } while(Index < 0x03C1);
 spiWriteRegAutoIncr(0xFF);
}

Code to Write to the Character Memory
The following routine writes a single character to the character memory. Each character is 12 pixels by 18 lines,
totalling 216 pixels. Since each byte defines four pixels, 54 bytes are required to define each character. The data
for the character is held in data[] on entry. (This is similar to the above routine for writing to the display memory.)

Writing to the character memory is worth some extra explanation. The memory is nonvolatile and, therefore, writing
to it takes around 12ms and is performed by the MAX7456 itself. Only whole characters of 54 bytes can be written
to the character memory.

The device contains a 54-byte shadow memory. This memory is first filled with the character data to be written.
The device is then triggered to write this data to the NVM character memory.

There are several registers used to write to the character memory:
1. Character Memory Mode = 0x08. Write 0xA0 to this register to trigger the device to write the shadow memory

Page 8 of 12

to the NVM character memory.
2. Character Memory Address High = 0x09. This contains the address of the character to be written.
3. Character Memory Address Low = 0x0A.
4. Character Memory Data In = 0x0B
5. Status = 0xA0. Read from this to determine when the character memory is available for writing.

On entry, data[1] contains the address of the character to be written, data[2...54] contains the data for the
character.

To write a character to the NVM character memory, first write the address of the character. Each byte is then
written to the shadow memory. There is no autoincrement mode for writing to shadow memory, so the address
within the shadow memory must be written each time. The shadow memory can then be written to the NVM
character memory by writing 0xA0 to the Character Memory Mode register. The device will then set the Status
register bit 5 high to indicate that the character memory is not available for writing. Once completed, the device will
reset this bit low. No attempt should be made to write to the shadow memory while it is being transferred to the
character memory.

To avoid causing objectionable display flicker, the routine disables the OSD before writing to the character memory.

/**
 * spiWriteFM
 *
 * Writes to the Character Memory (54 bytes) from "data" extern
**/
void spiWriteFM()
{
 unsigned char Index;

 spiWriteReg(VIDEO_MODE_0_WRITE,spiReadReg
 (VIDEO_MODE_0_READ) & 0xF7); // Clear bit 0x08 to
DISABLE the OSD display
 spiWriteReg(FM_ADDRH_WRITE,data[1]); // Write the address
of the character to be written
 // MAX7456 glyph tile
definition
 // length = 0x36 = 54
bytes
 // MAX7456 64-byte
Shadow RAM accessed
 // through
FM_DATA_.. FM_ADDR.. contains a single
 // character/glyph-
tile shape
 for(Index = 0x00; Index < 0x36; Index++)
 {
 spiWriteReg(FM_ADDRL_WRITE,Index); // Write the address
within the shadow RAM
 spiWriteReg(FM_DATA_IN_WRITE,data[Index + 2]); // Write the data to
the shadow RAM
 }

 spiWriteReg(FM_MODE_WRITE, 0xA0); // MAX7456 "Font
Memory Mode" write 0xA0 triggers
 // copy from 64-byte
Shadow RAM to NV array.

 while ((spiReadReg(STATUS_READ) & 0x20) != 0x00); // Wait while NV
Memory status is BUSY
 // MAX7456 0xA0
status bit 0x20: NV Memory Status
 // Busy/~Ready
}

Page 9 of 12

Header File for the MAX7456
The following listing is a header file for the MAX7456. This code defines the register map for the device.

/**
 * spiWriteRegAutoIncr
 *
 * Writes to an 8-bit register with the SPI port by using the MAX7456's autoincrement
mode

**/
 // MAX7456
VIDEO_MODE_0 register
#define VIDEO_MODE_0_WRITE 0x00
#define VIDEO_MODE_0_READ 0x80
#define VIDEO_MODE_0_40_PAL 0x40
#define VIDEO_MODE_0_20_NoAutoSync 0x20
#define VIDEO_MODE_0_10_SyncInt 0x10
#define VIDEO_MODE_0_08_EnOSD 0x08
#define VIDEO_MODE_0_04_UpdateVsync 0x04
#define VIDEO_MODE_0_02_Reset 0x02
#define VIDEO_MODE_0_01_EnVideo 0x01
 // VIDEO MODE 0
bitmap
#define NTSC 0x00
#define PAL 0x40
#define AUTO_SYNC 0x00
#define EXT_SYNC 0x20
#define INT_SYNC 0x30
#define OSD_EN 0x08
#define VERT_SYNC_IMM 0x00
#define VERT_SYNC_VSYNC 0x04
#define SW_RESET 0x02
#define BUF_EN 0x00
#define BUF_DI 0x01

 // MAX7456
VIDEO_MODE_1 register
#define VIDEO_MODE_1_WRITE 0x01
#define VIDEO_MODE_1_READ 0x81

 // MAX7456 DM_MODE
register
#define DM_MODE_WRITE 0x04
#define DM_MODE_READ 0x84

 // MAX7456 DM_ADDRH
register
#define DM_ADDRH_WRITE 0x05
#define DM_ADDRH_READ 0x85

 // MAX7456 DM_ADDRL
register
#define DM_ADDRL_WRITE 0x06
#define DM_ADDRL_READ 0x87

 // MAX7456 DM_CODE_IN
register
#define DM_CODE_IN_WRITE 0x07
#define DM_CODE_IN_READ 0x87

 // MAX7456
DM_CODE_OUT register
#define DM_CODE_OUT_READ 0xB0

 // MAX7456 FM_MODE
register
#define FM_MODE_WRITE 0x08
#define FM_MODE_READ 0x88

Page 10 of 12

 // MAX7456 FM_ADDRH
register
#define FM_ADDRH_WRITE 0x09
#define FM_ADDRH_READ 0x89

 // MAX7456 FM_ADDRL
register
#define FM_ADDRL_WRITE 0x0A
#define FM_ADDRL_READ 0x8A

 // MAX7456 FM_DATA_IN
register
#define FM_DATA_IN_WRITE 0x0B
#define FM_DATA_IN_READ 0x8B

 // MAX7456
FM_DATA_OUT register
#define FM_DATA_OUT_READ 0xC0

 // MAX7456 STATUS
register
#define STATUS_READ 0xA0
#define STATUS_40_RESET_BUSY 0x40
#define STATUS_20_NVRAM_BUSY 0x20
#define STATUS_04_LOSS_OF_SYNC 0x04
#define STATUS_02_PAL_DETECTED 0x02
#define STATUS_01_NTSC_DETECTED 0x01

 // MAX7456 requires
clearing OSD Black Level
 // register bit 0x10
after reset
#define OSDBL_WR 0x6C
#define OSDBL_RD 0xEC
#define OSDBL_10_DisableAutoBlackLevel 0x10

Conclusion and Performance
The MAX7456 EV kit uses the MAXQ2000 microcontroller that runs at 20MHz clock. This microcontroller contains
an internal hardware SPI controller. The MAX7456's SPI port can, therefore, run at full speed. The software SPI
routines above do perform slower than the hardware controller. However, the routines have been optimized for
portability if a customer application lacks a hardware SPI port.

Related Parts

MAX7456 Single-Channel Monochrome On-Screen Display with
Integrated EEPROM

Free Samples

MAX7456EVKIT Evaluation Kit for the MAX7456

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 4184: http://www.maximintegrated.com/an4184
APPLICATION NOTE 4184, AN4184, AN 4184, APP4184, Appnote4184, Appnote 4184
Copyright © by Maxim Integrated Products

Page 11 of 12

http://www.maximintegrated.com/datasheet/index.mvp/id/5516
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAX7456
http://www.maximintegrated.com/datasheet/index.mvp/id/5569
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an4184

Additional Legal Notices: http://www.maximintegrated.com/legal

Page 12 of 12

http://www.maximintegrated.com/legal

	maxim-ic.com
	C-Code Software Routines for Using the SPI Interface on the MAX7456 On-Screen Display - Application Note - Maxim

