
         

VISIT ANALOG.COM

Technical Article

How to Integrate an
lwIP TCP/IP Stack into
Embedded Applications
Anju Puthenpurayil�, Central Applications Engineer

Abstract
The use of a TCP/IP stack is widespread in Ethernet communication interfaces
for local and wide area networks. Lightweight TCP/IP (lwIP) is a scaled down
implementation of the TCP/IP protocol focused on reducing RAM usage. This
article provides guidance on integrating the lwIP TCP/IP stack into an embedded
application, ultimately streamlining the development process and saving time
and effort.

Introduction
The lightweight TCP/IP (lwIP) stack is a compact implementation of the TCP/IP
protocol suite tailored to minimize RAM usage, making it well-suited for embed-
ded systems. It provides three distinct application programming interfaces (APIs):

	X Low level raw APIs
	X Higher level netconn APIs
	X BSD style socket APIs

This article will focus exclusively on examples using the raw API interface. The
raw API is event-driven and is designed to operate without an underlying operat-
ing system. Applications employing the raw API implement callback functions that
are triggered by core events.

Despite being more intricate than the socket API, the raw API offers significantly
higher throughput due to its lower overhead.

Various demo examples built on the lwIP TCP/IP stack will be discussed utilizing
Analog Devices’ MAX32570 microcontroller. The initial section delves into a ping
demo, demonstrating how to ping the device from a PC. The subsequent section
provides insights into a TCP Echo server example, which serves as a rudimentary
server demo, useful for testing TCP connections.

ADI’s MaximSDK software development kit contains the necessary software and
tools to develop firmware for ADI’s MSX32xxx microcontrollers. It includes an lwIP
stack library file, “MaximSDK\Libraries\lwIP”. Figure 1 shows the lwIP library files
in the MaximSDK folder structure.

Figure 1. ADI’s MaximSDK lwIP library files

The lwIP folder contains different subfolders:

	X API folder (netconn and socket APIs)
	X Core folder (lwIP core files including “tcp.c”, “ip.c,” etc.)

	X Netif folder (network interface files)

	X Include folder (all lwIP include files)

	X Maxim folder (customized mac driver for ADI’s microcontroller)

The lwIP architecture follows a TCP/IP model structure. The TCP/IP protocol is a
combination of different protocols at various layers. TCP/IP is normally consid-
ered to be a 4-layer system as shown in Figure 2.

https://www.analog.com
https://www.analog.com/
https://www.analog.com/en/products/max32570.html
https://github.com/analogdevicesinc/msdk
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2  How to Integrate an lwIP TCP/IP Stack into Embedded Applications

Application Layer Handles the Details
of a Particular Application

dhcp.c,
dns.c

Application Layer

Transport Layer Handles
Host to Host Communications

tcp.c,
udp.c

Transport Layer

Link Layer Includes the Device Driver
in the Operating System netif.h

Data-Link/Network
Interface Layer

Network/Internet Layer Handles
the Movement of the Packet

Around the Network
ip.c

Network/Internet
Layer

Figure 2. TCP/IP protocol layers.

An lwIP project always contains a configuration file named “lwipopts.h” and a
default configuration file called “opt.h”. The “opt.h” file contains all the default
stack configurations and its module configurations, whereas the “lwipopts.h”
allows the user to fully configure the stack and its modules. Note that this file
does not include all the possible lwIP options. So, if a configuration is not defined
in the “lwipopts.h” file, the default configuration defined in the “opt.h” will be
considered.

Similarly, the lwIP library has one application specific header file called “lwipcfg.h”.
The controller’s IP address, gateway address, netmask address, and MAC address
should be defined in the “lwipcfg.h” file as shown in Figure 3.

Figure 3. lwipcfg header file.

To establish a connection between lwIP and the underlying hardware drivers, a
platform-specific adaptation layer is necessary. For instance, when implementing
the lwIP stack for a microcontroller, a tailored driver is required to bridge the lwIP
stack and the microcontroller’s Ethernet MAC drivers. This custom driver should
encompass the following functionalities:

	X Initialization function: This function is responsible for initializing the MAC
driver specific to the microcontroller.

	X Send function: It facilitates the transfer of data received from the TCP stack
to the Ethernet MAC driver for subsequent transmission.

	X Receive function: This handles the forwarding of packets received from the
Ethernet MAC driver to the TCP stack.

For the ADI microcontroller, a pre-existing customized driver can be found in
the MaximSDK at the path “MaximSDK\Libraries\lwIP\Maxim\mxc_eth.c.” This
driver serves as a wrapper around the microcontroller’s own Ethernet MAC (EMAC)
peripheral library, which is located in the peripheral drivers at “C:\MaximSDK\
Libraries\PeriphDrivers\Source\EMAC.”

Ping Example
The “ping” command is a simple tool used for network troubleshooting. It
performs an Internet Control Message Protocol (ICMP) echo request by sending a
signal to a specific IP address and waits for a reply. When the destination receives
this request, it replies with an echo reply packet. This section will explain how to
perform a basic ping test from a Windows PC to a microcontroller to check their
connectivity. It will also cover how to use the microcontrollers’ ping module to
communicate with a PC.

Here’s how the Windows ping utility works:

	X It sends four data packets to the microcontroller and waits for a response.
	X The microcontroller sends these data packets back to the PC as a reply known

as echo reply requests.

To run the ping test:

	X Connect microcontroller EVKIT to a PC using an Ethernet cable.
	X Open the command prompt and type “ping <IP address of microcontroller>”

and press enter.

A reply in the command prompt such as that depicted in Figure 4 implies proper
connectivity between the PC and the microcontroller.

Figure 4. Ping output in command prompt.

VISIT ANALOG.COM  3

To Test Ping from the Microcontroller
The “lwIP_Ping” file is the ping example for the ADI’s MAX32570 microcontroller
included within the MaximSDK. It can be found at “C:\MaximSDK\Examples\
MAX32570\lwIP_Ping” and the following guidance is provided:

	X The IP address of the microcontroller is set using “lwipcfg.h” file. The IP
address of the microcontroller and the PC should be in the same series.

	X The IP address of the PC should be provided as the gateway address in the
microcontroller “lwipcfg.h” file.

	X Connect the PC and MAX32570 EVKIT using an Ethernet cable.
	X Run the ping example code.
	X Open the serial terminal in eclipse (Window-> Show view -> Terminal). The

terminal will show a ping result if the ping is successful as shown in Figure 5.

Figure 5. Ping output in serial terminal.

The command prompt shows only ping statistics. To view the actual data sent,
a tool called Wireshark is needed. Wireshark captures packets from a network
connection. After opening Wireshark, the Ethernet option should be selected.
Details will be shown such as source and destination MAC addresses, source and
destination IP addresses, communication protocol, and additional data sent. This
information is displayed in Wireshark as depicted in Figure 6.

As shown in the example, the data sent is 0x00, 0x01… to 0x1F. However, what if
the user wants to change the data sent?

Modify Data Sent from Microcontroller Ping
The data to be sent with ping is set in the “ping. c” file. The “Ping.c” file is the ping
sender module. The size of the data to be sent is set using “PING_DATA_SIZE” in the
“ping.c” file. The data size is set as 32 bytes as shown in Figure 7.

Figure 7. Ping data packet size.

The data to be sent is also defined in “ping.c” file. The additional data buffer is
filled with some data as shown in Figure 8 “0x00, 0x01, 0x02…to 0x1F.”

Figure 8. Ping data packet.

Depending on the application, if the user wants to change the data, the data buf-
fer can be modified in the “ping .c” file. For example, changing all 32 bytes of data
to “0x01, 0x01…0x01” is shown in Figure 9.

Figure 9. Modified ping data packet.

The modified “ping .c” file provides results in Wireshark as shown in Figure 10. The
data is then updated with the new parameters.

Figure 10. Modified ping data packet in Wireshark

Figure 6. Ping data packet in Wireshark.

https://www.analog.com

4  How to Integrate an lwIP TCP/IP Stack into Embedded Applications

TCP Echo Server
The ping examples utilize ICMP to determine the responsiveness of a target sys-
tem. It sends the intended recipient an echo request through the network using
default data. When the destination address gets this request, it replies with an
echo reply packet.

If a user wants to send customized data from one device to another, they use the
TCP protocol for data transmission. The Echo service is a standard TCP functional
mainly used to check reachability and identify routing problems. In this service, a
server and client are established using TCP. When the server gets a message from
a client, it sends that same message back.

In the MaximSDK, the “lwIP TCP” source file demonstrates how to use TCP func-
tions within the lwIP library. In this scenario, the microcontroller acts as a TCP
server and waits for a client request. The data sent from the client is echoed back.
The “tcpecho_raw.c” application source files should be used within the TCP Echo
server example. Follow the steps below to assign the TCP Echo server.

To set up the TCP Echo server:

	X Create a socket
	X Bind the socket to the advertised port number
	X Once bound, it starts listening for incoming connections
	X When a connection is requested, it accepts the request from the

client machine
	X The server then receives data from the client
	X Lastly, it sends back the same data

Figure 11 shows a snippet of code giving an overview of the firmware structure,
which is part of the main function. The config_emac function initializes the EMAC
and the MXC_ETH_Init initializes the lwIP stack.

Figure 11. A snippet of code giving an overview of the firmware structure.

After the EMAC and lwIP stack initialization, the TCP Echo server is initialized using
tcpecho_raw_init. The Echo server initialization structure is shown in Figure 12.

Figure 12. The Echo server initialization structure.

Echo server initialization will create a new socket. It will then bind the assigned
IP address and port number to the new socket. After binding, it will listen for a
connection from the remote client.

To test the TCP server example, use echotool.exe PC client utility. The
echotool.exe file should be saved in the C drive and the command prompt should
be opened from the C drive. In client mode, it sends data to the server and checks
whether it came back as shown in Figure 13. Be sure to use the echo tool in client
mode to test the server demo.

How to Test the TCP Server Example:
	X Ensure all connections are working properly.
	X Build the example code using eclipse.
	X Run the code in debug mode.
	X Open the command prompt window on the remote PC.
	X Enter the following in the command prompt:

	■ “C:\>echotool IP_address /p tcp /r 7 /n 15 /t 2 /d LwIP TCP echo server
Example”

IP_address is the actual board IP address. The static IP address is
192.168.100.200
/p tcp is the protocol (TCP protocol)
/r is the actual remote port on the echo server (echo port)
/n is the number of the echo requests
/t is the connection timeout in seconds
/d is the message to be sent for echo (for example, “LwIP TCP echo server
Example”)

Figure 13. TCP Echo server output.

VISIT ANALOG.COMFor regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the EngineerZone Online
Support Community. Visit ez.analog.com.

©2024 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

TA25260-6/24

The TCP protocol and data sent through the network can be verified using the
Wireshark software. Packets sent through the network will be available in
Wireshark as shown in Figure 14. The data sent through the command prompt is
“LwIP TCP echo server Example”. The same data is seen in the Wireshark software.

Conclusion
Understanding and effectively utilizing the capabilities of the lwIP stack along
with the ICMP-based ping tool and the TCP protocol opens up a wide array of
possibilities for network diagnostics and data transmission. ADI’s MAX32570
microcontroller and MaximSDK provide a robust foundation for implementing the
lwIP stack and building reliable communication systems. By following the outlined
examples in this article, network issues can be troubleshooted, creating seamless
connections and data integrity assurance.

References
1�nongnu.org/lwIP/2_1_x/index.html

 �wireshark.org/download.html

 �github.com/PavelBansky/EchoTool

�
About the Author
Anju Puthenpurayil is currently a central applications engineer in the CAC
team at Analog Devices. Anju holds a master’s degree in VLSI and embedded
systems from Defence Institute of Advanced Technology (DIAT) Pune, India.
Her commitment to stay up to date with industry trends and advancements
makes the perfect contribution to the success of Analog Devices’ product
offerings.

Engage with the ADI technology experts in our online support community.
Ask your tough design questions, browse FAQs, or join a conversation.

	 Visit ez.analog.com

Figure 14. TCP Echo server output in Wireshark.

https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com
https://www.nongnu.org/lwip/2_1_x/index.html
https://www.wireshark.org/download.html
https://github.com/PavelBansky/EchoTool
https://ez.analog.com
http://ez.analog.com

	Button 42:
	Page 1:

	Button 41:
	Page 1:

	Button 40:
	Page 1:

	Button 39:
	Page 1:

	Button 38:
	Page 1:

	Button 37:
	Page 1:

