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Introduction
In large digital beamforming antennas, dynamic range improvements 
through the beamforming process of combining signals from distributed 
waveform generators and receivers is highly desirable. A 10logN dynamic 
range improvement can be obtained in both noise and spurious perfor-
mance if the associated error terms are uncorrelated. N in this case is the 
number of waveform generator or receiver channels. Noise by nature is a 
very random process and therefore lends itself well to tracking correlated 
and uncorrelated noise sources. However, spurious signals make it less 
obvious how to force spurs to be uncorrelated. Therefore, any design 
method that can force spurious signals to be uncorrelated is valuable to 
phased array system architecture.

In this article we review a previously published technique to force spuri-
ous signals to be uncorrelated by offsetting the LO frequencies and 
digitally compensating for this offset. We then show how the most recent 
Analog Devices transceiver product, the ADRV9009, has built-in features 
enabling this capability. We then conclude with measured data demon-
strating the results of the technique. 

Known Spurious Decorrelation Methods
Various methods to force spurious decorrelation in phased arrays have been 
known for some time. Our first known publication dates back to 2002,1 
where a general method to ensure receiver spurious are uncorrelated is 
described. In the approach, signals are first modified in a known way from 
receiver to receiver. Then the signals become distorted by the receiver’s 
nonlinear components. At the receiver output, the modifications introduced 
earlier in the receiver are inverted. The intended signals become coherent 
or correlated, but the distorted terms are not restored. The modification 
method implemented in their testing was to set each local oscillator (LO) 
synthesizer to a different frequency, then correct for the modification by 
digitally tuning numerically controlled oscillators (NCOs) in the digital 
processing. Several other methods have also been published.2, 3 

Years later, with the advanced integration of full transceiver subsystems 
in single monolithic silicon, embedded programmable features in the 
transceiver products enable the spurious decorrelation method described 
in the article “Correlation of Nonlinear Distortion in Digital Phased Arrays: 
Measurement and Mitigation.”1
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Figure 1. ADRV9009 functional block diagram.
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Transceiver Features Enabling Spurious Decorrelation
A functional block diagram of the Analog Devices transceiver ADRV9009  
is shown in Figure 1.

Each waveform generator or receiver is implemented with a direct conver-
sion architecture. Daniel Rabinkin’s article, “Front-End Nonlinear Distortion 
and Array Beamforming,” discusses direct conversion architectures at 
greater length.4 The LO frequencies can be programmed independently on 
each IC. The digital processing section includes digital up/down conver-
sion with NCOs that can also be programmed independently across ICs. 
Peter Delos’ article, “A Review of Wideband RF Receiver Architecture 
Options,” provides further description of digital downconversion.5

Next, we will demonstrate a method to force spurious decorrelation across 
multiple transceivers. First, the LOs are offset in frequency by program-
ming the on-board phase-locked loops (PLLs). Then the NCO frequencies 
are set to digitally compensate for the applied LO frequency offset. By 
adjusting both features inside the transceiver IC, the digital data to and 
from the transceivers does not have to be offset in frequency and the 
entire frequency translation and spurious decorrelation is built into the 
transceiver IC. 

A representative block diagram for an array of waveform generators is 
shown in Figure 2. In our description we will describe the method and 
show data for waveform generators, but the method is equally applicable 
to an array of receivers. 

Figure 2. Forcing spurious to be uncorrelated by programming LO and NCO frequen-
cies across an array of waveform generators.

To illustrate the concept in frequency, an example with two transmit signals 
from a direct conversion architecture is shown in Figure 3. These cases 
are shown where the RF is on the high side of the LO. In a direct conver-
sion architecture, the image frequency and third harmonic appear on the 
opposite side of the LO and are shown below the LO frequency. When the 
LO frequencies are set to the same frequency across channels, the spuri-
ous frequencies are also at the same frequencies, as shown in Figure 3a. 
Figure 3b illustrates a case where LO2 is set at a higher frequency than 
LO1. The digital NCOs are equally offset such that the RF signal achieves 
coherent gain. The images and third-harmonic distortion products are at 

different frequencies and thus uncorrelated. Figure 3c illustrates the same 
configuration as Figure 3b but adds modulation to the RF carrier. 

Figure 3. Spectral illustration showing the spurious signals in frequency. Three 
cases are shown: (a) Two combined CW signals with no spur decorrelation,  
(b) two combined CW signals with forced spur decorrelation, and (c) two combined 
modulated signals with forced spur decorrelation.

Measured Results
An 8-channel, transceiver-based RF testbed was assembled to evaluate 
the transceiver product line for phased array applications. The test setup 
for evaluating the waveform generators is shown in Figure 4. For this test, 
the same digital data is applied to all waveform generators. A calibration is 
performed across the channels by adjusting the NCO phase to ensure the 
RF signals are in phase at the 8-way combiner and coherently combine.

Figure 4. Waveform generator spurious test setup.

Next we will show test data comparing spurious with the LOs and NCOs 
all set to the same frequency vs. spurious when the LOs and NCOs are 
offset in frequency. The transceivers used share an LO within a 2-channel 
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device (see Figure 1), so for the eight RF channels there are four different 
LO frequencies.

In Figure 5 and Figure 6, the transceiver NCOs and LOs are all set to the 
same frequency. In this case, the spurious signals produced from the image, 
the LO leakage, and the third harmonic are all at the same frequency. 
Figure 5 shows the individual transmit outputs measured on a spectrum 
analyzer. Figure 6 shows the combined output. In this particular test 
the spurs of the image and the LO leakage measured in dBc relative to 
the carrier showed improvement, but the third harmonic did not improve. 
In our testing we found the third harmonic was consistently correlated 

across channels, the image frequency was consistently uncorrelated, and 
the LO frequency varied depending on start-up conditions. This is reflected 
in Figure 3a, where we show coherent addition for the third harmonic, 
noncoherent addition for the image frequency, and partially coherent addi-
tion for the LO leakage frequency.

In Figure 7 and Figure 8, the transceiver LOs are all set to different frequen-
cies and the digital NCOs are adjusted in both frequency and phase such 
that the signals coherently combine. In this case, the spurious signals pro-
duced from the image, the LO leakage, and the third harmonic are forced  
to be at different frequencies. Figure 7 shows the individual transmit outputs 

Figure 5. Waveform generator spurious of each channel with LOs and NCOs set to the same frequency.

Figure 6. Combined waveform generator spurious with LOs and NCOs set to the same frequency. Note there is no improvement to the third-harmonic spur in this configuration.
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measured on a spectrum analyzer. Figure 8 shows the combined output. 
In this test the spurs of the image, the LO leakage, and the third harmonic 
measured in dBc relative to the carrier begin to spread into the noise and 
every spur shows an improvement when channels are combined.

When a very small number of channels are combined, as was done in 
this test, the spurs actually show a 20log(N) improvement in their relative 
levels. This is due to the signal components combining coherently and 
adding as 20log(N) while the spurs do not combine at all. In practice, with 
a large array and a much greater number of channels being combined, the 

improvement is expected to approach 10log(N). This is for two reasons. 
First, with a large number of signals being combined it will not be practical 
to spread the spurs out sufficiently such that each one can be considered 
in isolation. Consider a 1 MHz modulation bandwidth as an example. 
If a specification says that spurious emissions are to be measured in a 
1 MHz bandwidth, then ideally the spurs would be spread out so that 
they are at least 1 MHz apart. If this is not possible, then each 1 MHz of 
measurement bandwidth will include multiple spurious components. Since 
these will be at different frequencies, they will combine incoherently and 
the spurious power measured in each 1 MHz of bandwidth will increase 

Figure 7. Waveform generator spurious of each channel with LOs and NCOs offset in frequency.

Figure 8. Combined waveform generator spurious with LOs and NCOs offset in frequency. Note in this case that the spurs are spread in frequency and there is a clear 
SFDR improvement relative to the individual channel SFDR.
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as 10log(N). However, no single 1 MHz of measurement bandwidth will 
contain all the spurs, so in this case, N for the spurs is smaller than N for 
the signal and although the incremental improvement will be 10log(N), 
once N is large enough for the spurious density to place multiple spurs 
inside the measurement bandwidth, the absolute improvement will still 
be better than 10log(N) compared to the system without spurious signal 
decorrelation—that is, it will be somewhere between 10log(N) and 20log(N) 
decibels (or dB) better. Secondly, this test was done with CW signals, but 
real-world signals will be modulated and this will cause them to spread out, 
making nonoverlapping spurious signals impossible to achieve when a 
large number of channels are combined. These overlapping spurious signals 
will be uncorrelated and add incoherently, as 10log(N), in the overlap region.

It is worth making special mention of the LO leakage component when the 
LO is set to the same frequency across channels. The LO leakage is due to 
imperfect cancellation of the LO in the analogue modulator when two signal 
branches are summed. If the amplitude and phase imbalances are random 
errors, then the phase of the residual LO leakage component will also be 
random and when many different transceivers’ LO leakages are summed 
they will add incoherently, as 10log(N), even when they are at precisely the 
same frequency. This should also be the case with the modulator’s image 
component, but not necessarily the modulator’s third harmonic. With a small 
number of channels being coherently combined, it is unlikely the LO phases 
would be completely random, and thus the cause for partial decorrelation is 
shown in the measured data. With a very large number of channels, the LO 
phase approaches a much more random condition across channels and is 
anticipated to be an uncorrelated addition. 

Conclusion
The measured SFDR results when the LOs and NCOs are offset in frequen-
cy, which clearly shows the spurious created is all at different frequencies 
and is not coherent in the combining process, thus ensuring an SFDR 
improvement as channels are combined. LO and NCO frequency control 
is now a programmable feature in the latest Analog Devices’ transceiver 
products. The results demonstrate this feature can be exploited in phased 
array applications, which ensures an array-level SFDR improvement over 
single-channel performance. 
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