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Figure 1. RF system block diagram.
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Introduction
Today, wireless systems are ubiquitous, and the number of wireless 
devices and services are continuing to grow. The design of a complete 
RF system is a multidisciplinary design challenge, with the analog RF 
front end being the most critical part of it. However, the availability of 
integrated RF transceivers such as AD9361 greatly reduces the RF chal-
lenges on such designs. These transceivers provide a digital interface 
for the analog RF signal chain and allow easy integration to an ASIC 
or FPGA for the baseband processing. The baseband processor (BBP) 
allows user data to be processed in the digital domain between an end 
application and the transceiver device. The baseband processor design 
is also easily designed using system modeling tools such as Simulink. 
However, a novice user may find it difficult to understand and fill in this 
piece of the communication system puzzle. This article is a modest 
attempt to design and implement a simple RF baseband processor for 
an over the air communication system. The design is implemented on 
the AD-FMCOMMS2-EBZ and Xilinx® ZC706 platform using the AD9361 
FPGA reference design framework.

The first section of this article details the general design principles of 
this baseband processor. This section is mostly a theoretical introduction 
of the BBP. In the second section, the actual hardware implementation 
of the BBP is discussed using the AD9361 FPGA reference design from 
Analog Devices. It is noted that the main design goal is to keep the design 
as simple as possible and demonstrate a quick over the air data transfer 
in a lab environment. There are regulations and other implications in using 
and, thus, interfering with the RF spectrum.

Base Design
A typical RF system is shown in Figure 1, with the exception of direct RF 
systems. Only a single data path is shown in this Figure 1, the reverse 
direction is the mirror image of this data path. The baseband processor in 
question and presented in this article allows data to be processed in such 
a way that it is transferred over the air between the RF two systems. The 
base design requirements are discussed below.

Data Is Repeated on Both the Orthogonal Signals I&Q
Note that the carriers are independent and asynchronous to each other.  
Thus, there are phase and frequency offsets between transmit and receive 
carriers. This has an adverse effect on the demodulation at the receiver.  
A significant problem is signal inversion, the orthogonal signals may 
reverse their roles as the offsets periodically merge and drift apart.  
A simple method to overcome this ambiguity is to repeat the same  
data on both the orthogonal signals.

Data Is Transmitted and Received Serially (Bit-Wise)
The RF front-end interface to the BBP in most cases is a DAC and an 
ADC. These are the digital interfaces of an analog signal. Thus, it is not 
possible to simply send the data to the DAC input and expect the same 
at the ADC output. The data is transmitted serially, mapping the single bit 
data to the full resolution of the DAC. Similarly, the data is received serially, 
demapped from the full resolution of the ADC. This provides an ample 
amount of redundancy. If these were 16-bit converters, the receiver would 
make a decision of a 1 or 0 from a possible 65536 data set. This alone 
simplifies the decoding significantly.
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I&Q Signals Are Orthogonal to Each Other
The RF front-end device (such as AD9361) is an I/Q transceiver. These 
devices work the best if the inputs are orthogonal signals. These devices 
usually feature internal I/Q matching and correction along the two data 
paths so as to offset any variations between them. The convention is 
that the real (I) signal is a cosine function and the imaginary (Q) signal  
is a sine function.

The Modulation Scheme Is BPSK
It is possible to deploy all of the commonly known methods, amplitude, 
frequency, or phase modulation of the signals. It is relatively easier to 
detect phase differences. Since data is transferred serially, the natural 
choice is binary phase shift keying (BPSK).

The Bit Interval Is Eight Samples 
The data need timing information, the bit interval. The maximum possible 
bit interval is the sampling period. In order to keep the receiver simple, 
it requires ample time to decode the signal and make a decision. The 
simplest methods of timing recovery are zero crossing and peak detection. 
In this case the peaks are not going to be consistent. So zero crossing 
is chosen for detecting and tracking bit intervals. There are also carrier 
differences between the two systems. In some cases, a sample may be 
ambiguous at either end of the user data. Allowing four samples for each 
half of the sinusoidal signal, the bit interval is set to eight samples. Thus, 
the effective transfer rate is the sampling frequency divided by eight.

Data Has No DC Content
The timing and relative phase recovery is based on zero crossing of the 
signals. Thus, the individual signals need to be free from any dc content. 
It also requires the signal to allow at least one zero crossing every bit 
interval. A sinusoidal signal has both these properties and nicely fits with 
the BPSK modulation scheme mentioned above. 

Data Is Scrambled
The user data is arbitrary—it may very well be a long sequence of 1s or 
0s. The data need to be scrambled to allow the timing and phase recovery 
at the receiver to track the signal more effectively.

Data Is Transferred in Packets
The signals at the receiver are expected to have amplitude, frequency, and 
phase errors given that the systems are asynchronous to each other. The 
demodulated signal is a variation of the phase of the transmitted signal 
with respect to the local carrier. The carriers may track for a while, take 
a data hit, and track again. Thus, the design needs to be prepared to take 
some data loss. In order to support this, data is transferred in packets.  
A few packets may be repeated in lieu of the entire data.

Packets Are Validated Using CRC
The packets carry a cyclic redundancy check (CRC) so that the receiver 
is allowed to drop the packet if there is a mismatch and request it to be 
sent again.

Timing and Phase Correction Is Done During  
Every Preamble
The packet header carries a preamble for delineation of it from the received 
data stream. This preamble is also used by the receiver to reset the timing 
and phase information of the signals to demodulate the packet data.

Built-In Performance Metrics
The receiver also supports statistical counters such as the number of 
packets received, dropped, or corrected. These counters are used to  
measure and monitor the performance metrics including bit error rate  
and effective data rate. 

In summary, the data is transmitted and received serially as packets. 
The packets carry a preamble and CRC. The data is BPSK modulated and 
demodulated on intermediate orthogonal signals before the transceiver 
device. The intermediate signal frequency and, hence, the bit rate of the 
data is one eighth the sampling rate. The baseband processor module  
with the design details outlined above is shown in Figures 2 and 3.

The transmitter reads bytes of data (character width) and converts them 
to packets with a header or preamble. A CRC is added to the tail end of 
the packet. The packet data is then scrambled and serialized. The single 
bit data then phase modulates a cosine (I) and sine (Q) function before 
interfacing to the transceiver.
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Figure 2. BBP transmit functional block diagram.

Figure 3. BBP receive functional block diagram.
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In the receive direction, an offline module recovers and tracks the timing 
intervals and the relative phase of the modulated signal. This information 
is used to recover serial data from the incoming ADC samples. They are 
then assembled to packets and descrambled. At the end of the packet, the 
CRC is compared and if there is a mismatch the packet is dropped. If the 
CRC matches, data is passed to the end user.

Implementation
The BBP design is implemented and tested in hardware. The hardware is 
a combination of two evaluation boards: the Xilinx ZC706 evaluation board 
featuring the Zynq FPGA device and the AD-FMCOMMS3-EBZ evaluation 
board featuring the AD9361 transceiver. ADI provides a complete refer-
ence design supporting this hardware. This open-source design is freely 
available, fully supported, and updated across major tool versions. The 
hardware details are found in the following URLs:

ZC706

AD-FMCOMMS3-EBZ

Zynq SOC

AD9361

ADI GitHub Repository

ZC706 and AD-FMCOMMS3-EBZ HDL Reference Design

AXI AD9361 IP

The ADI reference design is an embedded system supporting the Linux® 
framework. It consists of various peripherals around the ARM® processors. 
The AD9361 device interfaces to the axi_AD9361 IP peripheral.  
It transfers raw sampling data between the RF device and system memory. 

The peripherals and devices are initialized and controlled via Linux kernel 
drivers. The BBP is implemented as another IP peripheral that interfaces to 
the axi_AD9361. The BBP IP is named axi_xcomm2ip for historical 
reasons. A user space application in Linux is used to control, send, and 
receive data between the systems.

In the ADI reference design, the axi_AD9361 IP interfaces to an 
unpack module (util_upack) in the transmit direction and a pack  
module (util_cpack) in the receive direction. In the transmit direc-
tion, the BBP data is inserted between the unpack module and the AD9361 
core. In order for this to not affect the default data path, the BBP supports 
an optional data path multiplexer to select either the unpacked data source 
or the BBP data source. The BBP allows the reference design data path 
as the default and selects the BBP data source only when enabled. In the 
receive direction, the BBP simply interfaces to the AD9361 core. The refer-
ence design data path is unaffected. This allows the frame work to boot 
and set up the system unhindered. After the system setup, BBP is enabled 
to allow data transfer by overriding the default data path. A block diagram 
of the BBP as it is implemented in the ADI reference design is shown in 
Figure 4.

The design, initialization, and data transfer discussed in this article uses 
a pair of this hardware. The setup only requires a pair of HDMI® moni-
tors, a keyboard and mouse, and antennae. The systems are completely 
asynchronous to each other but do require the same settings. The data 
is transferred on different carriers in each direction. The transmit carrier 
frequency of device 1 and the receive carrier frequency of device 2 are  
the same but different in the other direction. However, if using a single 
device in loopback, the transmit and receive carriers must be of the  
same frequency. The HDL design of the BBP utilizes ADI library modules.
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Control (Microprocessor) Interface
An AXI-Lite interface is used for controlling and monitoring the BBP  
by the processor. This interface module is simply inferred using the  
up_axi module from the ADI common library (hdl/library/
common/up_axi.v). This module translates the AXI-Lite interface 
to a simple memory like read and write bus. The internal registers and 
memory are added just like any other ADI IP. The register map is detailed  
in Table 1.

The up_axi module ports and their port mappings are described below.

up_rstn: AXI interface reset (asynchronous active low),  
connected to s_axi_aresetn. 
up_clk: AXI interface clock, connected to s_axi_aclk. 
up_axi_*: AXI interface signals, connected to equivalent  
s_axi_* ports.

up_wreq, up_waddr, up_wdata, up_wack: The internal 
write interface, the up_wreq signal is asserted to indicate a write 
request along with the address and data. The request needs to be 
acknowledged via the up_wack port. 

A simple register write is implemented as follows.

always @(negedge up_rstn or posedge up_clk) 
begin 
if (up_rstn == 0) begin 
up_wack <= ‘d0; 
up_reg0 <= UP_REG0_RESET_VALUE; 
end else begin 
up_wack <= up_wreq_s; 
if ((up_wreq_s == 1’b1) && (up_waddr == UP_
REG0_ADDRESS)) begin 
up_reg0 <= up_wdata[UP_REG0_WIDTH-1:0]; 
end 
end 
end

The module performs an address translation in between. The AXI inter-
face uses byte addresses, but the internal bus uses DWORD addresses. 
The result is that the up_axi module drops the two least significant 
bits of the AXI address to generate the internal DWORD address. 

up_rreq, up_raddr, up_rdata, up_rack: The inter-
nal read interface, the up_rreq signal, is asserted to indicate a read 
request along with the address. The request needs to be acknowledged 
via the up_rack port along with the read data. 

Address Register Name Type

Fields Name Description Default

0x000 XCOMM2IP_VERSION RO

31:0 VERSION The IP version. 0x40063

0x008 XCOMM2IP_SCRATCH RW

31:0 SCRATCH Scratch register. 0x0

0x800 XCOMM2IP_TX_RESET RW

0 TX_RESET If set to 0x1, transmit is reset. This bit must be set to 0x0 
for normal operation.

0x1

0x804 XCOMM2IP_TX_ENABLE RW

0 TX_ENABLE If set to 0x0, data path is unaffected and UNPACK data 
is transmitted to the DAC. If set to 0x1, the BBP data is 
transmitted to the DAC.

0x0

0x808 XCOMM2IP_TX_REQ RW

0 TX_REQ If set by software, initiates a packet transfer in the transmit 
direction. This bit is self-cleared by hardware when the 
transfer is complete.

0x0

0x80C-0x87C XCOMM2IP_TX_PKT_DATA_3- 
XCOMM2IP_TX_PKT_DATA_31

W

7:0 TX_PKT_DATA_3- TX_PKT_DATA_31 The packet data bytes 3 to 31. The hardware uses the first 
three bytes for header and the last byte for CRC.

W

0xC00 XCOMM2IP_RX_RESET RW

0 RX_RESET If set to 0x1, receive is reset. This bit must be set to 0x0 
for normal operation.

0x1

0xC08 XCOMM2IP_RX_REQ RW

0 RX_REQ If set by hardware, this indicates a packet is received and 
needs to be read by software. The software must clear this 
bit after reading the packet data. All subsequent packets 
are dropped until this bit is cleared by software.

0x0

0xC0C-0xC7C XCOMM2IP_RX_PKT_DATA_3- 
XCOMM2IP_RX_PKT_DATA_31

W

7:0 RX_PKT_DATA_3- RX_PKT_DATA_31 The packet data bytes 3 to 31. The hardware uses the first 
three bytes for header and the last byte for CRC.

W

Table 1. BBP Register Map
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The same register above implemented for read is shown below.

always @(negedge up_rstn or posedge up_clk) 
begin 
if (up_rstn == 0) begin 
up_rack <= ‘d0; 
up_rdata <= ‘d0; 
end else begin 
up_rack <= up_rreq_s; 
if ((up_rreq_s == 1’b1) && (up_raddr == UP_
REG0_ADDRESS)) begin 
up_rdata <= up_reg0; 
end else begin 
up_rdata <= 32‘d0; 
end 
end 
end

The same address translation applies for read also. The read data is  
only driven when requested and otherwise set to zero. This is because  
the up_axi module passes individual read data from various address 
blocks to an OR gate. Thus, the blocks that are not selected need to drive  
the read data zero. 

The BBP has three address spaces as listed in the register map table 
above. The common register space is mapped to 0x000, transmit (DAC) is 
mapped to 0x800 (0x200), and receive (ADC) is mapped to 0xC00 (0x300). 
The software (Linux user space application) is expected to write the 
transmit packet data to a buffer and read the received packet data from 
another buffer. The packet size is chosen to be 32 bytes with a 3 byte 
preamble and a 1 byte CRC.

Data Interface
The AD9361 interface core consists of two pairs of 16-bit I/Q data for the 
two channels in receive and transmit direction. The core runs at the same 
clock as the AD9361 digital interface. In 2R2T mode, this is 4× the sam-
pling rate. In 1R1T mode, this is 2× the sampling rate. The effective data 
rate is controlled by the valid signal. Thus in 2R2T mode, valid is asserted 
once every four clocks. In 1R1T mode, valid is asserted every two clocks. 
The BBP is designed to support both 2R2T and 1R1T mode. It uses a single 
transmit and receive channel. The internal logic is made to run at the 
sampling rate in both 2R2T and 1R1T mode. The BBP then transfers data 
with the interface core at its clock frequency. This is intentionally done to 
demonstrate clock conversion within the BBP. In many cases a user may 
want to run the BBP logic at the sampling rate regardless of the interface 
rate of the transceiver. 

The internal clock at the sampling frequency is generated using Xilinx 
primitives BUFR and BUFG. The BUFR is a divider and BUFG is a high fan-
out clock buffer. It is also possible to use a MMCM for this purpose. The 
internal clock is generated as follows.

parameter XCOMM2IP_1T1R_OR_2T2R_N = 0; 
localparam XCOMM2IP_SCLK_DIVIDE = 
(XCOMM2IP_1T1R_OR_2T2R_N == 1) ? “2” : “4”; 
 
BUFR #(.BUFR_DIVIDE(XCOMM2IP_SCLK_DIVIDE)) 
i_bufr ( 
 .CLR (1’b0), 
 .CE (1’b1), 
 .I (clk), 
 .O (s_clk_s)); 
 
BUFG i_bufg ( 
 .I (s_clk_s), 
 .O (s_clk));

The use of BUFR and BUFG ensures that the clocks are frequency locked 
at the expense of phase certainty. The maximum phase ambiguity is a 
single period of the interface clock. This is easily compensated by a four 
stage register array with a synchronization signal. However, the design 
uses dual port RAM modules to implement the data transfer. This is 
intentionally done as a use case example of common signal processing 
requirements. The dual port RAM elements are inferred using the ADI 
library memory modules (ad_mem).

Transmit Interface
In the transmit direction, the processor writes packet data to a buffer (see 
the register map table above). It then requests to the hardware to send 
this packet. The BBP continuously sends packets to the device. At the 
beginning of a packet, it checks for any requests. If there is no pending 
request, it transmits an idle packet. If a request is pending, the packet 
buffer is read and transmitted.

The transmit logic runs at bit width using a free running bit counter. The 
buffer read address is updated when the bit counter is 0x0. Since the 
processor request may occur any time during a packet transfer, it is cap-
tured immediately and cleared at the beginning of a packet transfer. At the 
beginning of a packet transfer, if a request is pending it is acknowledged 
back to the processor interface. The request is used to select between 
buffer data or idle data.

Figure 5. Transmit data path.

The first two bytes of the packet data is set to 0xfff0. The third byte  
is used to indicate an idle (0xc5) or a data (0xa6) packet. The CRC  
byte is inserted as the last byte of the packet. The CRC polynomial is  
x8 + x2 + x + 1. All the bytes except the header are scrambled. The 
scrambling polynomial is same as SONET/SDH (x7 + x6 + 1).

A cosine and sine lookup table is used to generate the modulated car-
rier. The bit interval equals the full cycle (0 to 2π) of the signal in eight 
samples. The bit data is used to invert the signal. The data is then written 
to a small buffer and read based on the valid signal from the AD9361 
interface core using the interface clock.

Receive Interface
In the receive direction, the I/Q data is monitored for the header pattern 
0xfff0. This is the unique pattern that appears once in a packet transfer. 
It is possible to send packet data such that the scrambler output repeats 
this pattern. This is discouraged and prevented by software. This series of 
in-phase data sequence for 12 consecutive bit intervals is used to reset 
and track the receiver timing and phase by the timing recovery module. 
Thus, it resets its timing counters and sets its phase value to 0x1. The 
first inversion after this sequence is considered 0x0. After this, the timing 
recovery module maintains its state throughout the packet transfer.

The data recovery module averages the signal and makes a decision on 
the current phase of the signal. It is then compared to the relative phase 
tracked by the timing recovery module. In the case of a conflict, decision 
is based on past changes on the signal. This is because conflicts usually 
arise from phase switching.

Figure 6. Receive data path.
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The demodulated bit data is then assembled to bytes and descrambled. 
The data is written to the transfer buffer if it is empty. The CRC is verified 
at the end of packet. If it matches and the transfer buffer is written, the 
processor interface is notified. The software is expected to monitor this 
request and, if set, empty the buffer by reading its contents. It must then 
clear the request to allow further packet transfers. 

Build Instructions and Downloads
This article provides the theory and implementation specifics for a simple 
RF baseband processor. A practical implementation of this design on the 
ZC706 and AD-FMCOMMS3-EBZ hardware is discussed. The complete 
design files for a quick demonstration and build instructions are docu-
mented at https://wiki.analog.com/resources/fpga/docs/hdl/xcomm2ip. 
The wiki also details the HDL design, software, RF setup, performance, 
and analysis.
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