

RELIABILITY REPORT

FOR

MAX9995ETX+

PLASTIC ENCAPSULATED DEVICES

January 5, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX9995ETX+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX9995 dual, high-linearity, downconversion mixer provides 6.1dB gain, +25.6dBm IIP3, and 9.8dB NF for UMTS/WCDMA, DCS, and PCS base-station applications. The MAX9995 is ideal for low-side LO injection. (For a mixer variant optimized for high-side LO injection, contact the factory.) This device integrates baluns in the RF and LO ports, a dual-input LO selectable switch, an LO buffer, two doublebalanced mixers, and a pair of differential IF output amplifiers. The MAX9995 requires a typical LO drive of 0dBm and supply current is guaranteed to be below 380mA. These devices are available in a compact 36-pin thin QFN package (6mm x 6mm) with an exposed paddle. Electrical performance is guaranteed over the extended temperature range, from TC = -40°C to +85°C.

II. Manufacturing Information

A. Description/Function: Dual, SiGe, High-Linearity, 1700MHz to 2200MHz Downconversion Mixer with

LO Buffer/Switch

B. Process: G4

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: China, ThailandF. Date of Initial Production: July 23, 2004

III. Packaging Information

A. Package Type: 36-pin TQFN 6x6

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1 mil dia.)
F. Mold Material: Epoxy with silica is

F. Mold Material: Epoxy with silica filler
 G. Assembly Diagram: #05-9000-0730
 H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 38°C/W
K. Single Layer Theta Jc: 1.4°C/W
L. Multi Layer Theta Ja: 28°C/W
M. Multi Layer Theta Jc: 1.4°C/W

IV. Die Information

A. Dimensions: 116 X 129 mils

 $\begin{array}{lll} \text{B. Passivation:} & \text{Si}_3\text{N}_4 \\ \text{C. Interconnect:} & \text{Au} \\ \text{D. Backside Metallization:} & \text{None} \end{array}$

E. Minimum Metal Width: 1.2 microns (as drawn) Metal 1, 2 & 3 5.6 microns (as

drawn) Metal 4

F. Minimum Metal Spacing: 1.6 microns (as drawn) Metal 1, 2 & 3, 4.2 microns (as

drawn) Metal 4

G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = 1$$
MTTF

= 1.83
(Chi square value for MTTF upper limit)

192 x 4340 x 95 x 2

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 11.3 \times 10^{-9}$$

 $\lambda = 11.3 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the G4 Process results in a FIT Rate of 0.02 @ 25C and 0.37 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The CR23 die type has been found to have all pins able to withstand a transient pulse of:

HBM: +/-400 V per Mil-Std 88 Method 3015.7.

MM: +/-50 V per JESD22 A115.

Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1Reliability Evaluation Test Results

MAX9995ETX+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (N	lote 1)				
	Ta = 150°C	DC Parameters	95	0	
	Biased	& functionality			
	Time = 192 hrs.	·			
Moisture Testing ((Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stress	(Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	•			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data