

RELIABILITY REPORT

FOR

MAX9986ETP+

PLASTIC ENCAPSULATED DEVICES

October 29, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Don Lipps
Quality Assurance
Manager, Reliability Engineering

Conclusion

The MAX9986ETP+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX9986 high-linearity downconversion mixer provides 10dB gain, +23.6dBm IIP3, and 9.3dB NF for 815MHz to 995MHz base-station receiver applications. With a 960MHz to 1180MHz LO frequency range, this particular mixer is ideal for high-side LO injection receiver architectures. Low-side LO injection is supported by the MAX9984, which is pin-for-pin and functionally compatible with the MAX9986. In addition to offering excellent linearity and noise performance, the MAX9986 also yields a high level of component integration. This device includes a double-balanced passive mixer core, an IF amplifier, a dual-input LO selectable switch, and an LO buffer. On-chip baluns are also integrated to allow for single-ended RF and LO inputs. The MAX9986 requires a nominal LO drive of 0dBm, and supply current is guaranteed to be below 265mA. The MAX9984/MAX9986 are pin compatible with the MAX9994/MAX9996 1700MHz to 2200MHz mixers, making this entire family of downconverters ideal for applications where a common PC board layout is used for both frequency bands. The MAX9986 is also functionally compatible with the MAX9993. The MAX9986 is available in a compact, 20-pin, thin QFN package (5mm x 5mm) with an exposed paddle. Electrical performance is guaranteed over the extended -40°C to +85°C temperature range.

II. Manufacturing Information

SiGe High-Linearity, 815MHz to 995MHz Downconversion Mixer with LO A. Description/Function:

Buffer/Switch

G4 B. Process:

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: China, Thailand F. Date of Initial Production: February 09, 2005

III. Packaging Information

A. Package Type: 20-pin TQFN 5x5

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin D. Die Attach: Conductive E. Bondwire: Au (1 mil dia.) F. Mold Material: Epoxy with silica filler

#05-9000-1318 G. Assembly Diagram: H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 48°C/W

K. Single Layer Theta Jc: 2.1°C/W L. Multi Layer Theta Ja: 32°C/W 2.7°C/W

M. Multi Layer Theta Jc:

IV. Die Information

A. Dimensions: 97 X 94 mils B. Passivation: Si_3N_4 C. Interconnect: Au D. Backside Metallization: None

E. Minimum Metal Width: 1.2 microns (as drawn) Metal 1, 2 & 3 5.6 microns (as

Level 1

drawn) Metal 4

F. Minimum Metal Spacing: 1.6 microns (as drawn) Metal 1, 2 & 3, 4.2 microns (as

drawn) Metal 4

G. Bondpad Dimensions: 5 mil. Sq. H. Isolation Dielectric: SiO₂ I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (\(\lambda \)) is calculated as follows:

$$\chi = \frac{1}{MTTF}$$
 = $\frac{1.83}{192 \times 4340 \times 96 \times 2}$ (Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 11.5 \times 10^{-9}$$

 $\lambda = 11.5 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the G4 Process results in a FIT Rate of 0.02 @ 25C and 0.37 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot NUX2BQ003A, D/C 0448)

The CR28-2 die type has been found to have all pins able to withstand a HBM transient pulse of +/-500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1Reliability Evaluation Test Results

MAX9986ETP+

NUX0BQ003A, DC	,
NUX5A3004C, DC	c, DC 0536
J	14073730040

Note 1: Life Test Data may represent plastic DIP qualification lots.