

RELIABILITY REPORT FOR MAX9933EUA+

PLASTIC ENCAPSULATED DEVICES

October 26, 2007

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX9933EUA+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

- I.Device Description
- II.Manufacturing Information
- III.Packaging Information

- V.Quality Assurance Information VI.Reliability Evaluation
-Attachments

IV.Die Information

I. Device Description

A. General

The MAX9930-MAX9933 low-cost, low-power logarithmic amplifiers are designed to control RF power amplifiers (PA) and transimpedance amplifiers (TIA), and to detect RF power levels. These devices are designed to operate in the 2MHz to 1.6GHz frequency range. A typical dynamic range of 45dB makes this family of logarithmic amplifiers useful in a variety of wireless and GPON fiber video applications such as transmitter power measurement, and RSSI for terminal devices. Logarithmic amplifiers provide much wider measurement range and superior accuracy to controllers based on diode detectors. Excellent temperature stability is achieved over the full operating range of -40°C to +85°C. The choice of three different input voltage ranges eliminates the need for external attenuators, thus simplifying PA control-loop design. The logarithmic amplifier is a voltage-measuring device with a typical signal range of -58dBV to -13dBV for the MAX9930/MAX9933, -48dBV to -3dBV for the MAX9931, and -43dBV to +2dBV for the MAX9932. The MAX9930-MAX9933 require an external coupling capacitor in series with the RF input port. These devices feature a power-on delay when coming out of shutdown, holding OUT low for approximately 2.5µs to ensure glitch-free controller output. The MAX9930-MAX9933 family is available in an 8-pin μMAX® package. These devices consume 7mA with a 5V supply, and when powered down, the typical shutdown current is 13µA.

II. Manufacturing Information

2MHz to 1.6GHz 45dB RF-Detecting Controllers and RF Detector

- B. Process:
- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	8-pin uMAX
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive Epoxy
E. Bondwire:	Gold (1 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-9000-2800
H. Flammability Rating:	Class UL94-V0
 Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C 	Level 1
J. Single Layer Theta Ja:	221°C/W
K. Single Layer Theta Jc:	41.9°C/W
L. Multi Layer Theta Ja:	206.3°C/W
M. Multi Layer Theta Jc:	41.9°C/W

IV. Die Information

A.	Dimensions:	51 X 54 mils
Β.	Passivation:	Si ₃ N ₄ (Silicon nitride)
C.	Interconnect:	Gold
D.	Backside Metallization:	None
E.	Minimum Metal Width:	Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)
F.	Minimum Metal Spacing:	Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)
G.	Bondpad Dimensions:	5 mil. Sq.
H.	Isolation Dielectric:	SiO ₂
I.	Die Separation Method:	Wafer Saw

CB3

Oregon

Pre 1997

Malaysia, Philippines, Thailand

V. Quality Assurance Information

A. Quality	Assurance Contacts:	Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)
B. Outgoi	ng Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.0.1% For all Visual Defects.
C. Obser	ved Outgoing Defect Rate:	< 50 ppm
D. Sampl	ing Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are pending. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{\frac{1.83}{192 \times 4340 \times 45 \times 2}}_{(\text{where } 4340 = \text{Temperature Acceleration factor assuming an activation energy of 0.8eV)}$ $\lambda = 23.86 \times 10^{-9}$

𝔅 = 23.86 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the CB3 Process results in a FIT Rate of 0.14 @ 25C and 2.42 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The OY27-3 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per JEDEC JESD22-A114-D. Latch-Up testing has shown that this device withstands a current of 250mA.

Table 1 Reliability Evaluation Test Results

MAX9933EUA+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES		
Static Life Test (Note 1)						
	Ta = 150°C	DC Parameters	45	0		
	Biased	& functionality				
	Time = 192 hrs.	2				
Moisture Testing (Note 2)						
85/85	Ta = 85°C	DC Parameters	77	0		
	RH = 85%	& functionality				
	Biased					
	Time = 1000hrs.					
Mechanical Stress (Note 2)						
Temperature	-65°C/150°C	DC Parameters	77	0		
Cycle	1000 Cycles	& functionality				
	Method 1010					

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data

