

RELIABILITY REPORT

FOR

MAX9722AETE+ (MAX9722A/MAX9722B)

PLASTIC ENCAPSULATED DEVICES

December 19, 2008

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by	
Ken Wendel	
Quality Assurance	
Director, Reliability Engineering	_

Conclusion

The MAX9722AETE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

The MAX9722A/MAX9722B stereo headphone amplifiers are designed for portable equipment where board space is at a premium. The MAX9722A/MAX9722B use a unique, patented DirectDrive(tm) architecture to produce a ground-referenced output from a single supply, eliminating the need for large DC-blocking capacitors, which saves cost, board space, and component height. Additionally, the gain of the amplifier is set internally (-2V/V, MAX9722B) or adjusted externally (MAX9722A). The MAX9722A/MAX9722B deliver up to 70mW per channel into a 16 load or 130mW into a 32 load and have low 0.009% THD+N. An 80dB at 217Hz power-supply rejection ratio (PSRR) allows these devices to operate from noisy digital supplies without an additional linear regulator. The MAX9722A/MAX9722B include ±8kV ESD protection on the headphone outputs. Comprehensive anticlick-and-pop circuitry suppresses audible clicks and pops on startup and shutdown. A low-power shutdown mode reduces the supply current to 0.1µA. The MAX9722A/MAX9722B operate from a single 2.4V to 5.5V supply, consume only 5.5mA of supply current, feature short-circuit and thermal-overload protection, and are specified over the extended -40°C to +85°C temperature range. The devices are available in tiny 16-pin thin QFN (3mm x 3mm x 0.8mm) and 16-pin TSSOP packages.

II. Manufacturing Information

A. Description/Function: 5V, Differential Input, DirectDrive, 130mW Stereo Headphone Amplifiers with

Shutdown

B. Process: C6

C. Number of Device Transistors: 0

D. Fabrication Location: California, USA

E. Assembly Location: ISPL Philippines, Carsem Malaysia, UTL Thailand, Unisem Malaysia

F. Date of Initial Production: Pre 1997

III. Packaging Information

A. Package Type: 16-pin TQFN 3x3

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive Epoxy
E. Bondwire: Au (1.0 mil dia.)
F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 64°C/W
K. Single Layer Theta Jc: 6.9°C/W
L. Multi Layer Theta Ja: 48°C/W
M. Multi Layer Theta Jc: 6.9°C/W

IV. Die Information

A. Dimensions: 61 X 61 mils B. Passivation: SiO2/SiN3 C. Interconnect: Al/Cu D. Backside Metallization: None E. Minimum Metal Width: 0.6um F. Minimum Metal Spacing: 0.6um G. Bondpad Dimensions: 5 mil. Sq. SiO2 H. Isolation Dielectric: I. Die Separation Method: Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are pending. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{\text{F}} = \underbrace{\frac{1.83}{192 \times 4340 \times 48 \times 2}}_{\text{(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)}}_{\lambda = 22.4 \times 10^{-9}}$$

$$\lambda = 22.4 \times 10^{-9}$$

$$\lambda = 22.4 \times 10^{-9}$$

$$\lambda = 22.4 \times 10^{-9}$$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the C6 Process results in a FIT Rate of 0.82 @ 25C and 14.21 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The AU35 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500 V per JEDEC JESD22-A114-D. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1

Reliability Evaluation Test Results

MAX9722AETE+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (Note 1)				
,	Ta = 135°C	DC Parameters	48	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	s (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data