

RELIABILITY REPORT FOR MAX8677AETG+T

PLASTIC ENCAPSULATED DEVICES

October 9, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by				
Richard Aburano	_			
Quality Assurance				
Manager, Reliability Operations				

Conclusion

The MAX8677AETG+T successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

The MAX8677A is an integrated 1-cell Li+ charger and Smart Power Selector(tm) with dual (DC and USB) power inputs. It can operate with either separate inputs for USB and AC adapter power, or from a single input that accepts both. All power switches for charging and switching the load between battery and external power are included on-chip. No external MOSFETs are required. The MAX8677A features a Smart Power Selector to make the best use of limited USB or adapter power. The battery charge current and input current limit are independently set up to 1.5A and 2A, respectively. Input power not used by the system charges the battery. USB input current can be set to 100mA or 500mA. Automatic input selection switches the system load from battery to external power. Other features include overvoltage protection (OVP), charge status and fault outputs, power-OK monitors, charge timer, and battery thermistor monitor. Additionally, on-chip thermal limiting reduces the battery charge rate to prevent overheating. The MAX8677A is available in a 4mm x 4mm, 24-pin TQFN-EP package.

II. Manufacturing Information

A. Description/Function: 1.5A Dual-Input, USB/AC Adapter Charger and Smart Power Selector

B. Process: S45

C. Number of Device Transistors:

D. Fabrication Location: California, Texas or Japan

E. Assembly Location: China, Malaysia, Philippines, Thailand

F. Date of Initial Production: January 20, 2007

III. Packaging Information

A. Package Type: 24-pin TQFN 4x4

B. Lead Frame: Copper

C. Lead Finish:

D. Die Attach:

Conductive

E. Bondwire:

Au (1.3 mil dia.)

F. Mold Material:

Epoxy with silica filler

G. Assembly Diagram:

#05-9000-2503

H. Flammability Rating:

Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 48°C/W
K. Single Layer Theta Jc: 2.7°C/W
L. Multi Layer Theta Ja: 36°C/W
M. Multi Layer Theta Jc: 2.7°C/W

IV. Die Information

A. Dimensions: 100 X 100 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)
 F. Minimum Metal Spacing: Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Operations)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 45 \times 2}$$
 (Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 24.4 \times 10^{-9}$$

 $\lambda = 24.4 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S45 Process results in a FIT Rate of 0.49 @ 25C and 8.49 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot SA0XEA011B, D/C 0652)

The PP87-2 die type has been found to have all pins able to withstand a transient pulse of

ESD-HBM: +/- 2500V per JEDEC JESD22-A114

ESD-MM: +/- 250V per JEDEC JESD22-A115 (lot TAOXG3021C, D/C 0824) ESD-CDM: +/- 750V per JEDEC JESD22-C101 (lot TAOXG3025A, D/C 0826)

Latch-Up testing has shown that this device withstands a current of 250mA.

Table 1Reliability Evaluation Test Results

MAX8677AETG+T

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (N	ote 1) Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	45	0	SAOXEA005A, D/C 0705

Note 1: Life Test Data may represent plastic DIP qualification lots.