

RELIABILITY REPORT FOR MAX863EEE+ PLASTIC ENCAPSULATED DEVICES

January 21, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by				
Ken Wendel				
Quality Assurance				
Director, Reliability Engineering				

Conclusion

The MAX863EEE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

- I.Device Description V.Quality Assurance Information II.Manufacturing Information
- III.Packaging Information
-Attachments

VI.Reliability Evaluation IV.Die Information

I. Device Description

A. General

The MAX863 dual-output DC-DC converter contains two independent step-up controllers in a single compact package. This monolithic Bi-CMOS design draws only 85µA when both controllers are on. The input range extends down to 1.5V, permitting use in organizers, translators, and other low-power hand-held products. The MAX863 provides 90% efficiency at output loads from 20mA to over 1A. This space-saving device is supplied in a 16-pin QSOP package that fits in the same area as an 8-pin SOIC. The device uses a current-limited, pulse-frequency-modulated (PFM) control architecture that reduces start-up surge currents and maintains low quiescent currents for excellent low-current efficiency. Each controller drives a low-cost, external, N-channel MOSFET switch, whose size can be optimized for any output current or voltage. In larger systems, two MAX863s can be used to generate 5V, 3.3V, 12V, and 28V from just two or three battery cells. An evaluation kit (MAX863EVKIT) is available to speed designs. For a single-output controller, refer to the MAX608 and MAX1771 data sheets.

II. Manufacturing Information

A. Description/Function:Dual, High-Efficiency, PFM, Step-Up DC-DC ControllerB. Process:S3

Oregon

April 25, 1997

Malaysia, Philippines, Thailand

- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	16-pin QSOP
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive
E. Bondwire:	Au (1.3 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-1701-0268
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	120°C/W
K. Single Layer Theta Jc:	37°C/W
L. Multi Layer Theta Ja:	103.7°C/W
M. Multi Layer Theta Jc:	37°C/W

IV. Die Information

A. Dimensions:	62 X 120 mils
B. Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)
C. Interconnect:	Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization:	None
E. Minimum Metal Width:	3.0 microns (as drawn)
F. Minimum Metal Spacing:	3.0 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

MAX863

A. Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \times 4340 \times 80 \times 2} \text{ (Chi square value for MTTF upper limit)}$ $\lambda = 13.4 \times 10^{-9}$ $\lambda = 13.4 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S3 Process results in a FIT Rate of 0.04 @ 25C and 0.69 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The PW68-2 die type has been found to have all pins able to withstand a HBM transient pulse of +/-3000 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

MAX863EEE+							
TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES			
Static Life Test ((Note 1)						
	Ta = 135°C	DC Parameters	80	0			
	Biased	& functionality					
	Time = 192 hrs.						
Moisture Testing	(Note 2)						
HAST	Ta = 130°C	DC Parameters	77	0			
	RH = 85%	& functionality					
	Biased						
	Time = 96hrs.						
Mechanical Stres	s (Note 2)						
Temperature	-65°C/150°C	DC Parameters	77	0			
Cycle	1000 Cycles	& functionality					
	Method 1010						

 Table 1

 Reliability Evaluation Test Results

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data