

RELIABILITY REPORT FOR MAX8627ETD+T

PLASTIC ENCAPSULATED DEVICES

December 18, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by			
Richard Aburano			
Quality Assurance			
Manager, Reliability Operations			

Conclusion

The MAX8627ETD+T successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

- I.Device Description V.Quality Assurance Information
- II.Manufacturing Information
- III.Packaging Information
-Attachments

VI.Reliability Evaluation

- I. Device Description
 - A. General

The MAX8627 step-up converter is a high-efficiency, low-quiescent current, synchronous boost converter with True Shutdown(tm) and inrush current limiting. The MAX8627 generates any boosted output voltage from 3V to 5V from either a 2-cell NiMH/NiCd or a single-cell Li+/Li polymer battery. Quiescent current is only 20µA (typ), and at light loads the converter pulses only as needed for best efficiency. At higher loads, PWM mode maintains fixed 1MHz operation for lowest noise and ripple. The MAX8627 includes an internal soft-start to limit inrush current to a maximum of 500mA. Additional features include True Shutdown, internal compensation, and adjustable current limit. The MAX8627 is available in a tiny 3mm x 3mm TDFN package and is ideal for use in handheld devices such as DSCs, PDAs, and smartphones.

II. Manufacturing Information

Α.	Description/Function:	Low $V_{\text{BATT}},20\mu A~I_{\text{Q}},1MHz$ Synchronous Boost Converter with True Shutdown
В.	Process:	S45
C.	Number of Device Transistors:	7846
D.	Fabrication Location:	California, Texas or Japan
Ε.	Assembly Location:	Thailand
F.	Date of Initial Production:	April 07, 2006

III. Packaging Information

A. Package Type:	14-pin TDFN 3x3
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive
E. Bondwire:	Au (2 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-9000-1725
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	54°C/W
K. Single Layer Theta Jc:	8.3°C/W
L. Multi Layer Theta Ja:	41°C/W
M. Multi Layer Theta Jc:	8.3°C/W

IV. Die Information

A. Dimensions:	70 X 73 mils
B. Passivation:	Si ₃ N ₄ /SiO ₂ (Silicon nitride/ Silicon dioxide)
C. Interconnect:	Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization:	None
E. Minimum Metal Width:	Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)
F. Minimum Metal Spacing:	Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:	Richard Aburano (Manager, Reliability Operations) Bryan Preeshl (Vice President of QA)		
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.		
C. Observed Outgoing Defect Rate:	< 50 ppm		
D. Sampling Plan:	Mil-Std-105D		

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (A) is calculated as follows:

 $\begin{array}{l} \lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \text{ x} 4340 \text{ x} 47 \text{ x} 2} (\text{Chi square value for MTTF upper limit}) \\ \\ \chi = 23.4 \text{ x} 10^{-9} \\ \\ \lambda = 23.4 \text{ F.I.T.} (60\% \text{ confidence level @ 25°C}) \end{array}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S45 Process results in a FIT Rate of 0.49 @ 25C and 8.49 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot ST00GQ003G, D/C 0606)

The PP15 die type has been found to have all pins able to withstand a HBM transient pulse of +/- 2000V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of 250mA.

Table 1 Reliability Evaluation Test Results

MAX8627ETD+T

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (I	Note 1) Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	47	0	ST00GQ003G, D/C 0606

Note 1: Life Test Data may represent plastic DIP qualification lots.