

RELIABILITY REPORT

FOR

MAX8520ETP+ (MAX8520/MAX8521)

PLASTIC ENCAPSULATED DEVICES

December 23, 2008

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by	
Ken Wendel	
Quality Assurance	
Director, Reliability Engineering	

Conclusion

The MAX8520ETP+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

- I.Device Description
- II.Manufacturing Information
- III.Packaging Information
-Attachments

- V.Quality Assurance Information VI.Reliability Evaluation
- IV.Die Information

I. Device Description

A. General

The MAX8520/MAX8521 are designed to drive thermo-electric coolers (TECs) in space-constrained optical modules. Both devices deliver ±1.5A output current and control the TEC current to eliminate harmful current surges. On-chip FETs minimize external components and high switching frequency reduces the size of external components. The MAX8520 and MAX8521 operate from a single supply and bias the TEC between the outputs of two synchronous buck regulators. This operation allows for temperature control without "dead zones†or other nonlinearities at low current. This arrangement ensures that the control system does not hunt when the set point is very close to the natural operating point, requiring a small amount of heating or cooling. An analog control signal precisely sets the TEC current. Both devices feature accurate, individually adjustable heating current limit and cooling current limit, along with maximum TEC voltage limit to improve the reliability of optical modules. An analog output signal monitors the TEC current. A unique ripple cancellation scheme helps reduce noise. The MAX8520 is available in a 5mm x 5mm thin QFN package and its switching frequency is adjustable up to 1MHz through an external resistor. The MAX8521 is also available in a 5mm x 5mm thin QFN, as well as a space-saving 3mm x 3mm UCSP™, with a pin-selectable switching frequency of 500kHz or 1MHz.

II. Manufacturing Information

A. Description/Function:

- B. Process:
- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	20-pin TQFN 5x5
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive Epoxy
E. Bondwire:	Gold (2 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-9000-0102
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	48°C/W
K. Single Layer Theta Jc:	2.1°C/W
L. Multi Layer Theta Ja:	30°C/W
M. Multi Layer Theta Jc:	2.1°C/W

Smallest TEC Power Drivers for Optical Modules

B8

California or Texas

October 26, 2002

ASAT China, UTL Thailand

IV. Die Information

A. Dimensions:	120 X 120 mils
B. Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide
C. Interconnect:	Aluminum/Si (Si = 1%)
D. Backside Metallization:	None
E. Minimum Metal Width:	0.8 microns (as drawn)
F. Minimum Metal Spacing:	0.8 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \frac{1}{\text{MTF}} = \frac{1.83}{192 \text{ x } 4340 \text{ x } 48 \text{ x } 2}$ (Chi square value for MTTF upper limit) (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV) $\lambda = 22.4 \text{ x } 10^{-9}$ $\lambda = 22.4 \text{ F.I.T.} (60\% \text{ confidence level @ 25°C})$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the B8 Process results in a FIT Rate of 2.71 @ 25C and 17.30 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The PM83 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1000 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-100 mA.

Table 1 Reliability Evaluation Test Results

MAX8520ETP+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	48	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data