

FOR
MAX845+ (Rev C)

PLASTIC ENCAPSULATED DEVICES

August 11, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX845+ (Rev C) successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information	
IIManufacturing Information	VIReliability Evaluation	
IIIPackaging Information	IVDie Information	
Attachments		

I. Device Description

A. General

The MAX845 provides an isolated power supply small enough to fit in thin PCMCIA cards and space-sensitive applications. It drives a low-profile center-tapped transformer primary from a 5V or 3.3V DC power supply. The secondary can be wound to provide any isolated positive or negative voltage at powers up to 750mW. The MAX845 consists of an oscillator followed by a toggle flip-flop. The flip-flop generates two 50% duty-cycle square waves, which are complementary at half the oscillator frequency (450kHz, min). These two signals drive the ground-referenced N-channel power switches. Internal circuitry ensures break-before-make action between the two switches. A low-power shutdown disables both the switches and the oscillator, reducing power consumption. An evaluation kit (MAX845EVKIT-MM) is available to evaluate low-profile 5V 40mA and 5V 100mA applications.

II. Manufacturing Information

A. Description/Function: Isolated Transformer Driver for PCMCIA Applications

B. Process: M5

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: Philippines, Thailand, Malaysia

F. Date of Initial Production: Pre 1997

III. Packaging Information

A. Package Type: 8-pin SOIC (N)
B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive Epoxy
E. Bondwire: Gold (1.3 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-1901-0044
H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 170°C/W
K. Single Layer Theta Jc: 40°C/W
L. Multi Layer Theta Ja: 132°C/W
M. Multi Layer Theta Jc: 38°C/W

IV. Die Information

A. Dimensions: 58 X 85 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/1.0%Si
D. Backside Metallization: None

E. Minimum Metal Width: Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)
 F. Minimum Metal Spacing: Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 5.4 \times 10^{-9}$$

% = 5.4 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maximic.com/. Current monitor data for the M5 Process results in a FIT Rate of 3.2 @ 25C and 54.8 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The RS19-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-100 mA.

Table 1Reliability Evaluation Test Results

MAX845+ (Rev C)

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (Note 1)				
,	Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	200	0	
Moisture Testing	(Note 2)				
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality	77	0	
Mechanical Stres	s (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles Method 1010	& functionality			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data