

RELIABILITY REPORT

FOR

MAX823TEUK+T

PLASTIC ENCAPSULATED DEVICES

June 8, 2012

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by		
Sokhom Chum		
Quality Assurance		
Reliability Engineer		

Conclusion

The MAX823TEUK+T successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	IVDie Information		
IIManufacturing Information	VQuality Assurance Information		
IIIPackaging Information	VIReliability Evaluation		
Attachments			

I. Device Description

A. General

The MAX823/MAX824/MAX825 microprocessor (µP) supervisory circuits combine reset output, watchdog, and manual reset input functions in 5-pin SOT23 and SC70 packages. They significantly improve system reliability and accuracy compared to separate ICs or discrete components. The MAX823/MAX824/MAX825 are specifically designed to ignore fast transients on VCC. Seven preprogrammed reset threshold voltages are available (see *Reset Threshold Table* in the full data sheet). All three devices have an active-low reset output, which is guaranteed to be in the correct state for VCC down to 1V. The MAX823 also offers a watchdog input and manual reset input. The MAX824 offers a watchdog input and a complementary active-high reset. The Selector Guide explains the functions offered in this series of parts.

II. Manufacturing Information

A. Description/Function: 5-Pin Microprocessor Supervisory Circuits with Watchdog Timer and Manual

Reset

B. Process: B12

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: Malaysia, Thailand

F. Date of Initial Production: Pre 1997

III. Packaging Information

A. Package Type: 5L SOT23
B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1 mil dia.)
F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #05-1601-0010 / AH. Flammability Rating: Class UL94-V0

Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 324.3°C/W
K. Single Layer Theta Jc: 82°C/W
L. Multi Layer Theta Ja: 255.9°C/W
M. Multi Layer Theta Jc: 81°C/W

IV. Die Information

A. Dimensions: 42 X 36 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 1.2 microns (as drawn)F. Minimum Metal Spacing: 1.2 microns (as drawn)

G. Bondpad Dimensions:

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Engineering)

Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$_{\lambda}$$
 = $\frac{1}{\text{MTTF}}$ = $\frac{1.83}{192 \times 4340 \times 319 \times 2}$ (Chi square value for MTTF upper limit)

 $_{\lambda}$ = 3.4 x 10⁻⁹
 $_{\lambda}$ = 3.4 x 10⁻⁹
 $_{\lambda}$ = 3.4 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the B12 Process results in a FIT Rate of 0.06 @ 25C and 1.06 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot JTWAK017X D/C 0925)

The MS05-2 die type has been found to have all pins able to withstand a transient pulse of:

ESD-HBM: +/- 2000V per JEDEC JESD22-A114
ESD-CDM: +/- 750V per JEDEC JESD22-C101

Latch-Up testing has shown that this device withstands a current of +/- 250mA.

Table 1Reliability Evaluation Test Results

MAX823TEUK+T

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (No	te 1)				
·	Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	80 80 79 80	0 0 0 0	BTWABO001B, D/C 9610 BTWHBS006F, D/C 9645 NTWCGB010F, D/C 9747 ITWBHY001B, D/C 9943

Note 1: Life Test Data may represent plastic DIP qualification lots.