

RELIABILITY REPORT FOR

MAX7424EUA+

PLASTIC ENCAPSULATED DEVICES

September 11, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by

Ken Wendel

Quality Assurance

Director, Reliability Engineering

Conclusion

The MAX7424EUA+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information	
IIManufacturing Information	VIReliability Evaluation	
IIIPackaging Information	IVDie Information	
Attachments		

I. Device Description

A. General

The MAX7418-MAX7425 5th-order, low-pass, switched-capacitor filters (SCFs) operate from a single +5V (MAX7418-MAX7421) or +3V (MAX7422-MAX7425) supply. These devices draw only 3mA of supply current and allow corner frequencies from 1Hz to 45kHz, making them ideal for low-power post-DAC filtering and anti-aliasing applications. They feature a shutdown mode that reduces supply current to 0.2µA. Two clocking options are available: self-clocking (through the use of an external capacitor), or external clocking for tighter corner-frequency control. An offset adjust pin allows for adjustment of the DC output level. The MAX7418/MAX7422 deliver 53dB of stopband rejection and a sharp rolloff with a 1.6 transition ratio. The MAX7421/MAX7425 achieve a sharper rolloff with a 1.25 transition ratio while still providing 37dB of stopband rejection. The MAX7419/MAX7423 Bessel filters provide low overshoot and fast settling, and the MAX7420/MAX7424 Butterworth filters provide a maximally flat passband response. Their fixed response simplifies the design task of selecting a clock frequency.

II. Manufacturing Information

A. Description/Function: 5th-Order, Lowpass, Switched-Capacitor Filters

B. Process: C6YC. Number of Device Transistors: 1396D. Fabrication Location: Japan

E. Assembly Location: Thailand, MalaysiaF. Date of Initial Production: October 21, 2000

III. Packaging Information

A. Package Type: 8-pin uMAX
B. Lead Frame: Copper

C. Lead Finish:

D. Die Attach:

Conductive Epoxy

E. Bondwire:

Gold (1.3 mil dia.)

F. Mold Material:

Epoxy with silica filler

G. Assembly Diagram:

#05-0201-0128

H. Flammability Rating:

Class UL94-V0

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

Level 1

J. Single Layer Theta Ja: 221°C/W
K. Single Layer Theta Jc: 41.9°C/W
L. Multi Layer Theta Ja: 206.3°C/W
M. Multi Layer Theta Jc: 41.9°C/W

IV. Die Information

A. Dimensions: 59 X 81 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 0.6 microns (as drawn)F. Minimum Metal Spacing: 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate () is calculated as follows:

$$\lambda = 1 \over MTTF$$
 = 1.83 (Chi square value for MTTF upper limit) (Chi square value for MTTF upper limit) (where 4340 x 80 x 2 (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 13.4 \times 10^{-9}$$

λ = 13.4 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the C6Y Process results in a FIT Rate of 0.90 @ 25C and 15.55 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The AF17-8 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1Reliability Evaluation Test Results

MAX7424EUA+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (N	Note 1)				
	Ta = 135°C	DC Parameters	80	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stress	s (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data