

RELIABILITY REPORT FOR

MAX7322AEE+

PLASTIC ENCAPSULATED DEVICES

August 3, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by					
Ken Wendel					
Quality Assurance					
Director, Reliability Engineering					

Conclusion

The MAX7322AEE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

I.Quality Assurance Information

II.Manufacturing Information

VI.Reliability Evaluation

III.Packaging Information

IV.Die Information

.....Attachments

I. Device Description

A. General

The MAX7322 2-wire serial-interfaced peripheral features four push-pull outputs and four input ports with selectable internal pullups. Input ports are overvoltage protected to +6V and feature transition detection with interrupt output. The four input ports are continuously monitored for state changes (transition detection). The interrupt is latched, allowing detection of transient changes. Any combination of inputs can be selected using the interrupt mask to assert the open-drain active-low INT output. When the MAX7322 is subsequently accessed through the serial interface, any pending interrupt is cleared. The four push-pull outputs are rated to sink 20mA, and are capable of driving LEDs. The active-low RST input clears the serial interface, terminating any I²C communication to or from the MAX7322. The MAX7322 uses two address inputs with four-level logic to allow 16 I²C slave addresses. The slave address also sets the power-up default logic state for the four output ports, and enables or disables internal 40k pullups for the input ports. The MAX7322 is one device in a family of pin-compatible port expanders with a choice of input ports, open-drain I/O ports, and push-pull output ports (see Table 1 in the full datasheet). The MAX7322 is available in 16-pin QSOP and TQFN packages, and is specified over the -40°C to +125°C automotive temperature range.

II. Manufacturing Information

A. Description/Function: I2C Port Expander with 4 Push-Pull Outputs and 4 Inputs

B. Process: C6C. Number of Device Transistors: 8507D. Fabrication Location: California

E. Assembly Location: Carsem, ThailandF. Date of Initial Production: July 23, 2005

III. Packaging Information

A. Package Type: 16-pin QSOP
B. Lead Frame: Copper

C. Lead Finish:

D. Die Attach:

Conductive Epoxy

E. Bondwire:

Gold (1 mil dia.)

F. Mold Material:

G. Assembly Diagram:

#05-9000-1800

H. Flammability Rating:

Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 120°C/W
K. Single Layer Theta Jc: 37°C/W
L. Multi Layer Theta Ja: 103.7°C/W
M. Multi Layer Theta Jc: 37°C/W

IV. Die Information

A. Dimensions: 57 X 57 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 0.6 microns (as drawn)F. Minimum Metal Spacing: 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = 1 \over MTTF$$
 = 1.83 (Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 11.2 \times 10^{-9}$$

 $\lambda = 11.2 \text{ F.I.T. (60% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the C6 Process results in a FIT Rate of 1.6 @ 25C and 19.9 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The DW90-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1500 V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1

Reliability Evaluation Test Results

MAX7322AEE+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test ((Note 1)				
	Ta = 135°C	DC Parameters	96	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	•			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data