

RELIABILITY REPORT FOR MAX6684ESA+ PLASTIC ENCAPSULATED DEVICES

August 12, 2011

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Approved by				
Sokhom Chum				
Quality Assurance				
Reliability Engineer				

Conclusion

The MAX6684ESA+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

- I.Device Description IV.Die Information
- II.Manufacturing Information
- V.Quality Assurance Information
- III.Packaging Information
-Attachments

VI.Reliability Evaluation

I. Device Description

A. General

The MAX6684 is an integrated fan-failure detector that detects when a fan exhibits excessive underspeed or a locked rotor. This device is especially well suited for critical systems where no fan control, or simple on/off control is desired. The MAX6684 detects fan failure by evaluating fluctuations in current at the low side of the fan; no tachometer signal is necessary. The output of the device, active-low FAIL, is an active-low, open-drain alarm. The MAX6684 can also be used to switch the fan on or off, based on the state of a logic-level input, active-low OFF. This device can be used with fans rated at up to 24V and 250mA. The MAX6684 is available in an 8-pin SO package, and is specified for operation from -40°C to +85°C.

II. Manufacturing Information

A. Description/Function:

Fan-Failure Detector with Integrated Power Switch

B8

Oregon

January 26, 2002

Malaysia, Philippines, Thailand

- B. Process:
- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	8-pin SOIC (N)
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive
E. Bondwire:	Au (1.3 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-2901-0042
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	170°C/W
K. Single Layer Theta Jc:	40°C/W
L. Multi Layer Theta Ja:	132°C/W
M. Multi Layer Theta Jc:	38°C/W

IV. Die Information

A. Dimensions:	64 X 96 mils
B. Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)
C. Interconnect:	Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization:	None
E. Minimum Metal Width:	0.8 microns (as drawn)
F. Minimum Metal Spacing:	0.8 microns (as drawn)
G. Bondpad Dimensions:	
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:	Richard Aburano (Manager, Reliability Engineering)
	Don Lipps (Manager, Reliability Engineering)
	Bryan Preeshl (Vice President of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.
	0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{\text{192 x 4340 x 45 x 2}} \text{ (Chi square value for MTTF upper limit)}$ $\lambda = 24.4 \times 10^{-9}$ $\lambda = 24.4 \times 10^{-9}$ $\lambda = 24.4 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the B8 Process results in a FIT Rate of 0.06 @ 25C and 0.99 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (ESD lot I9B0AQ001B D/C 0144, Latch-Up lot S9B0BQ001B D/C 0501)

The TS32 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1000V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1 Reliability Evaluation Test Results

MAX6684ESA+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS	
Static Life Test (Note 1)						
	Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	45	0	I9B0AQ001B, D/C 0144	

Note 1: Life Test Data may represent plastic DIP qualification lots.