

RELIABILITY REPORT
FOR
MAX6611AUT+

PLASTIC ENCAPSULATED DEVICES

July 14, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by	
Ken Wendel	
Quality Assurance	
Director, Reliability Engineering	

Conclusion

The MAX6611AUT+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

The MAX6610/MAX6611 are precise, low-power analog temperature sensors combined with a precision voltage reference. They are ideal for applications involving analog-to-digital converters (ADCs), where the MAX6610/MAX6611 provide the reference voltage for the ADC and develop a temperature output voltage that is scaled to provide convenient ADC output codes. An 8-bit ADC's LSB is equal to 1°C, while a 10-bit ADC's LSB corresponds to 0.25°C. The MAX6610/MAX6611 are available in two versions. The MAX6611 operates from a 4.5V to 5.5V power supply and has a 4.096V reference output. The MAX6610 operates from 3.0V to 5.5V and has a 2.560V reference output. Power-supply current is less than 150μA (typ). Both the MAX6610/MAX6611 are available in a 6-pin SOT23 package and operate from -40°C to +125°C.

II. Manufacturing Information

Precision, Low-Power, 6-Pin SOT23 Temperature Sensors and Voltage A. Description/Function:

References

B. Process: B8

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: Malaysia, Philippines, Thailand

F. Date of Initial Production: April 27, 2002

III. Packaging Information

A. Package Type: 6-pin SOT23 B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin D. Die Attach: Conductive Epoxy E. Bondwire: Gold (1 mil dia.) F. Mold Material: Epoxy with silica filler #05-2901-0047 G. Assembly Diagram: H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

115*°C/W

Level 1

J. Single Layer Theta Jb: K. Single Layer Theta Jc: 80°C/W

IV. Die Information

A. Dimensions: 57 X 35 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide

C. Interconnect: AI/0.5%Cu D. Backside Metallization: None

E. Minimum Metal Width: 0.8 microns (as drawn) F. Minimum Metal Spacing: 0.8 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq. H. Isolation Dielectric: SiO₂ I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\frac{\lambda = \frac{1}{\text{MTTF}}}{= \frac{1.83}{192 \times 4340 \times 45 \times 2}}$$
 (Chi square value for MTTF upper limit) (Chi square value for MTTF upper limit) (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 23.9 \times 10^{-9}$$

A = 23.9 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the B8 Process results in a FIT Rate of 1.29 @ 25C and 15.6 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard $85^{\circ}\text{C}/85\%\text{RH}$ or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The TS42-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1500 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1Reliability Evaluation Test Results

MAX6611AUT+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (Note 1)				
· ·	Ta = 135°C	DC Parameters	45	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	s (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
•	Method 1010	•			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data