

RELIABILITY REPORT FOR MAX6037AAUK12+

PLASTIC ENCAPSULATED DEVICES

February 20, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX6037AAUK12+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

- I.Device Description V.Quality Assurance Information
- II.Manufacturing Information
- VI.Reliability Evaluation
- III.Packaging Information
-Attachments

IV.Die Information

I. Device Description

A. General

The MAX6037 family of low-dropout, micropower voltage references offer fixed and adjustable output voltage options ranging from 1.184V to 5V. Connect an external resistive-divider on the MAX6037_ADJ to adjust the output voltage from 1.184V to 5V. The other devices in the MAX6037 family feature fixed output voltages of 1.25V, 2.048V, 2.5V, 3.0V, 3.3V, and 4.096V. The MAX6037 offers shutdown functionality with an active-low shutdown (500nA, max). These series-mode voltage references operate from a 2.5V to 5.5V supply and consume 275μ A (max) quiescent current. The output is stable driving loads from 0.02μ F to 1μ F and can source and sink 5mA of load current. The MAX6037 offers a low temperature coefficient of 25ppm/°C and initial accuracy of $\pm 0.2\%$ (max). The low dropout voltage (100mV, max at 1mA) and supply-independent, low supply current make the MAX6037 ideal for battery-powered applications. The MAX6037 is available in the miniature 5-pin SOT23 package and is specified over the -40°C to +125°C automotive temperature range.

Low-Power, Fixed and Adjustable Reference with Shutdown in SOT23

Casrsem Malaysia, ISPL Philippines, UTL Thailand, Unisem Malaysia

- A. Description/Function:
- B. Process:
- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	5-pin SOT23
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	84-11misr4 Epoxy
E. Bondwire:	Gold (1 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-9000-0780
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	324.3°C/W
K. Single Layer Theta Jc:	82°C/W

IV. Die Information

A. Dimensions:	42 X 55 mils
B. Passivation:	$Si_3N_4\!/SiO_2$ (Silicon nitride/ Silicon dioxide
C. Interconnect:	Aluminum/Si (Si = 1%)
D. Backside Metallization:	None
E. Minimum Metal Width:	0.8 microns (as drawn)
F. Minimum Metal Spacing:	0.8 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

B8

23390

Texas

January 23, 2004

V. Quality Assurance Information

A. Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 144 \times 2}$ (Chi square value for MTTF upper limit) (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV) $\lambda = 7.5 \times 10^{-9}$ $\lambda = 7.5 \text{ F.I.T.}$ (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the B8 Process results in a FIT Rate of 2.71 @ 25C and 17.30 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The RF37-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1000 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1 Reliability Evaluation Test Results

MAX6037AAUK12+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	144	0	
	Biased	& functionality			
	Time = 192 hrs.	,			
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data