

RELIABILITY REPORT FOR MAX5814AUD+

PLASTIC ENCAPSULATED DEVICES

April 27, 2015

MAXIM INTEGRATED

160 RIO ROBLES SAN JOSE, CA 95134

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer

Conclusion

The MAX5814AUD+ successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

- I.Device Description
- II.Manufacturing Information
- IV.Die Information
- V.Quality Assurance Information
- III.Packaging Information
- VI.Reliability Evaluation

I. Device Description

A. General

.....Attachments

The MAX5813/MAX5814/MAX5815 4-channel, low-power, 8-/10-/12-bit, voltage-output digital-to-analog converters (DACs) include output buffers and an internal reference that is selectable to be 2.048V, 2.500V, or 4.096V. The MAX5813/MAX5814/MAX5815 accept a wide supply voltage range of 2.7V to 5.5V with extremely low power (3mW) consumption to accommodate most low-voltage applications. A precision external reference input allows rail-to-rail operation and presents a 100k (typ) load to an external reference. The MAX5813/MAX5814/MAX5815 have an I²C-compatible, 2-wire interface that operates at clock rates up to 400kHz. The DAC output is buffered and has a low supply current of less than 250µA per channel and a low offset error of ±0.5mV (typ). On power-up, the MAX5813/MAX5814/MAX5815 reset the DAC outputs to zero, providing additional safety for applications that drive valves or other transducers which need to be off on power-up. The internal reference is initially powered down to allow use of an external reference. The MAX5813/MAX5813/MAX5814/MAX5815 allow simultaneous output updates using software LOAD commands or the hardware load DAC logic input (active-low LDAC). A clear logic input (active-low CLR) allows the contents of the CODE and the DAC registers to be cleared asynchronously and sets the DAC outputs to zero. The MAX5813/MAX5814/MAX5815 are available in a 14-pin TSSOP and an ultra-small, 12-bump WLP package and are specified over the -40°C to +125°C temperature range.

II. Manufacturing Information

A. Description/Function:	Ultra-Small, Quad-Channel, 8-/10-/12-Bit Buffered Output DACs with Internal Reference and I ² C Interface
B. Process:	S18
C. Number of Device Transistors:	43896

Malaysia, Philippines, Thailand

California

May 23, 2014

D. Fabrication Location:

E. Assembly Location:F. Date of Initial Production:

III. Packaging Information

	A. Package Type:	14-pin TSSOP
	B. Lead Frame:	Copper
	C. Lead Finish:	100% matte Tin
	D. Die Attach:	Conductive
	E. Bondwire:	Au (1 mil dia.)
	F. Mold Material:	Epoxy with silica filler
	G. Assembly Diagram:	#05-9000-4971
	H. Flammability Rating:	Class UL94-V0
	I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
	J. Single Layer Theta Ja:	110°C/W
	K. Single Layer Theta Jc:	30°C/W
	L. Multi Layer Theta Ja:	100.4°C/W
	M. Multi Layer Theta Jc:	30°C/W
IV. Die Inf	formation	
	A. Dimensions:	60.2362X80.3149 mils
	B. Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)
	C. Interconnect:	Al with Ti/TiN Barrier
	D. Backside Metallization:	None
	E. Minimum Metal Width:	0.18um

0.18um

 H. Isolation Dielectric:
 SiO₂

 I. Die Separation Method:
 Wafer Saw

F. Minimum Metal Spacing:

G. Bondpad Dimensions:

V. Quality Assurance Information

A. Quality Assurance Contacts:	Don Lipps (Manager, Reliability Engineering) Bryan Preeshl (Vice President of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.0.1% for all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \text{ x} 4340 \text{ x} 79 \text{ x} 2} \text{ (Chi square value for MTTF upper limit)}$$

$$\lambda = 13.9 \text{ x} 10^{-9}$$

$$\lambda = 13.9 \text{ F.I.T. (60\% confidence level @ 25°C)}$$

The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the S18 Process results in a FIT Rate of 0.05 @ 25C and 0.93 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot SAPJ0A004B, D/C 1401)

The DB51-0 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA and overvoltage per JEDEC JESD78.

Table 1 Reliability Evaluation Test Results

MAX5814AUD+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	79	0	SAPJ0A004B, D/C 1401
	Biased	& functionality			
	Time = 192 hrs.				

Note 1: Life Test Data may represent plastic DIP qualification lots.