

RELIABILITY REPORT
FOR
MAX5500AGAP+

PLASTIC ENCAPSULATED DEVICES

February 27, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX5500AGAP+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX5500/MAX5501 integrate four low-power, 12-bit digital-to analog converters (DACs) and four precision output amplifiers in a small, 20-pin package. Each negative input of the four precision amplifiers is externally accessible providing flexibility in gain configurations, remote sensing, and high output drive capacity, making the MAX5500/MAX5501 ideal for industrial-process-control applications. Other features include software shutdown, hardware shutdown lockout, an active-low reset which clears all registers and DACs to zero, a user-programmable logic output, and a serial-data output. Each DAC provides a double-buffered input organized as an input register followed by a DAC register. A 16-bit serial word loads data into each input register. The serial interface is compatible with SPI(tm)/QSPI(tm)/MICROWIRE(tm). The serial interface allows the input and DAC registers to be updated independently or simultaneously with a single software command. The 3-wire interface simultaneously updates the DAC registers. All logic inputs are TTL/CMOS-logic compatible. The MAX5500 operates from a single +5V power supply, and the MAX5501 operates from a single +3V power supply. The MAX5501 are specified over the extended -40°C to +105°C temperature range.

II. Manufacturing Information

A. Description/Function: Low-Power, Quad, 12-Bit Voltage-Output DACs with Serial Interface

B. Process: S12

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: ATP Philippines, Carsem Malaysia

F. Date of Initial Production: October 25, 2008

III. Packaging Information

A. Package Type: 20-pin SSOP
B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive Epoxy
E. Bondwire: Au (1.3 mil dia.)
F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 125°C/W
K. Single Layer Theta Jc: 33°C/W
L. Multi Layer Theta Ja: 83°C/W
M. Multi Layer Theta Jc: 33°C/W

IV. Die Information

A. Dimensions: 124 X 153 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

E. Minimum Metal Width: 1.2 microns (as drawn)F. Minimum Metal Spacing: 1.2 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{1000 \times 4340 \times 150 \times 2}$$
 (Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$x = 1.4 \times 10^{-9}$$

% = 1.4 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the S12 Process results in a FIT Rate of 0.09 @ 25C and 1.48 @ 55C, data limited (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The DA59 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1000 V per JEDEC JESD22-A114-D. Latch-Up testing has shown that this device withstands a current of +/-250 mA, 1.5x VCCMax Overvoltage per JESD78.

Table 1

Reliability Evaluation Test Results

MAX5500AGAP+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	150	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased	,			
	Time = 1000hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	·			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data