MAX5422ETA Rev. A

RELIABILITY REPORT

FOR

MAX5422ETA

PLASTIC ENCAPSULATED DEVICES

December 5, 2008

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by

Ken Wendel Quality Assurance Director, Reliability Engineering

Conclusion

The MAX5422 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description II.Manufacturing Information III.Packaging Information IV.Die Information V.Quality Assurance Information VI.Reliability Evaluation

.....Attachments

I. Device Description

A. General

The MAX5422/MAX5423/MAX5424 nonvolatile, lineartaper, digital potentiometers perform the function of a mechanical potentiometer, but replace the mechanics with a simple 3-wire SPI[™]-compatible digital interface. Each device performs the same function as a discrete potentiometer or variable resistor and has 256 tap points.

The devices feature an internal, nonvolatile EEPROM used to store the wiper position for initialization during power-up. The 3-wire SPI-compatible serial interface allows communication at data rates up to 5MHz, minimizing board space and reducing interconnection complexity in many applications.

The MAX5422/MAX5423/MAX5424 provide three nominal resistance values: 50kn (MAX5422), 100kn (MAX5423), or 200kn (MAX5424). The nominal resistor temperature coefficient is 35ppm/°C end-to-end and only 5ppm/°C ratiometric. This makes the devices ideal for applications requiring a low-temperature-coefficient variable resistor, such as low-drift, programmable gainamplifier circuit configurations.

II. Manufacturing Information

A. Description/Function:	256-Tap, Nonvolatile, SPI-Interface, Digital Potentiometers
B. Process:	E35
C. Number of Device Transistors:	10,191
D. Fabrication Location:	Dallas, USA
E. Assembly Location:	Thailand
F. Date of Initial Production:	July, 2004

III. Packaging Information

A. Package Type:	8-Lead TDFN (3mm x 3mm)
B. Lead Frame:	Copper or 100% Matte Tin
C. Lead Finish:	Solder Plate
D. Die Attach:	Silver-Filled Epoxy
E. Bondwire:	Gold (1 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	# 05-9000-0882
H. Flammability Rating:	Class UL94-V0
 Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C: 	Level 1

IV. Die Information

A. Dimensions:	61 x 45 mils
B. Passivation:	Si ₃ N ₄ /SiO ₂ (Silicon nitride/ Silicon dioxide)
C. Interconnect:	Aluminum/Si/Coppper
D. Backside Metallization:	None
E. Minimum Metal Width:	Metal 1 .5 microns (as drawn), Metal 2/3 .7 microns (as drawn)
F. Minimum Metal Spacing:	Metal 1 .6 microns (as drawn), Metal 2/3 .8 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

- A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Operations) Bryan Preeshl (Managing Director)
- B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
- C. Observed Outgoing Defect Rate: < 50 ppm
- D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in **Table 1**. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \frac{1}{MTTF} = \frac{1.83}{1000 \times 4340 \times 48 \times 2}$ (Chi square value for MTTF upper limit)

Temperature Acceleration factor assuming an activation energy of 0.8eV

 $\lambda = 22.4 \text{ x } 10^{-9}$

 λ = 22.4 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the E35X Process results in a FIT Rate of 0.28 @ 25C and 17.30 @ 55C (0.8 eV, 60% UCL).

B. Moisture Resistance Tests

Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85°C/85%RH testing is done per generic device/package family once a quarter.

C. E.S.D. and Latch-Up Testing

The DP15-2 die type has been found to have all pins able to withstand a transient pulse of ± 2000 V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ± 250 mA.

Table 1 Reliability Evaluation Test Results

MAX5422ETA

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	PACKAGE	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test	t (Note 1)				
	Ta = 135°C Biased Time = 1000 hrs.	DC Parameters & functionality		48	0
Moisture Testi	ng (Note 2)				
Pressure Pot	Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs.	DC Parameters & functionality	DFN	77	0
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality		77	0
Mechanical Str	ress (Note 2)				
Temperature Cycle	-65°C/150°C 1000 Cycles Method 1010	DC Parameters & functionality		77	0

Note 1: Life Test Data may represent plastic DIP qualification lots. Note 2: Generic Package/Process data

Attachment #1

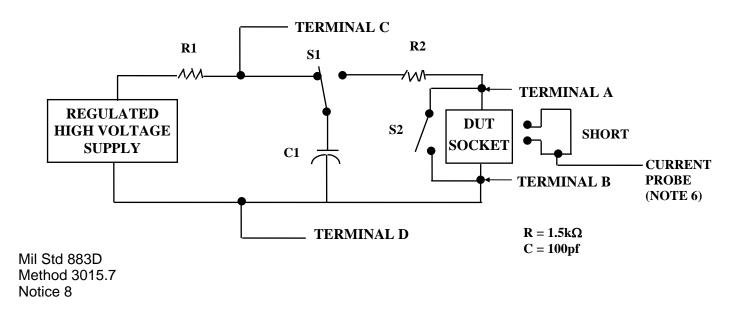

	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except V _{PS1} <u>3/</u>	All V _{PS1} pins
2.	All input and output pins	All other input-output pins

TABLE II. Pin combination to be tested. 1/2/

- 1/ Table II is restated in narrative form in 3.4 below.
- $\frac{2}{3}$ No connects are not to be tested. $\frac{3}{3}$ Repeat pin combination I for each named Power supply and for ground

(e.g., where V_{PS1} is V_{DD} , V_{CC} , V_{SS} , V_{BB} , GND, $+V_S$, $-V_S$, V_{RFF} , etc).

- 3.4 Pin combinations to be tested.
 - Each pin individually connected to terminal A with respect to the device ground pin(s) connected a. to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
 - Each pin individually connected to terminal A with respect to each different set of a combination b. of all named power supply pins (e.g., V_{SS1}, or V_{SS2} or V_{SS3} or V_{CC1}, or V_{CC2}) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
 - Each input and each output individually connected to terminal A with respect to a combination of c. all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

