

RELIABILITY REPORT FOR MAX5222EKA+ PLASTIC ENCAPSULATED DEVICES

September 10, 2010

# **MAXIM INTEGRATED PRODUCTS**

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

| Approved by                      |  |  |  |
|----------------------------------|--|--|--|
| Don Lipps                        |  |  |  |
| Quality Assurance                |  |  |  |
| Manager, Reliability Engineering |  |  |  |



#### Conclusion

The MAX5222EKA+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

#### **Table of Contents**

- I. .....Device Description V. .....Quality Assurance Information
- II. ......Manufacturing Information
- III. .....Packaging Information
- .....Attachments

- VI. .....Reliability Evaluation

IV. .....Die Information

#### I. Device Description

A. General

The MAX5222 contains two 8-bit, buffered, voltage-output digital-to-analog converters (DAC A and DAC B) in a small 8-pin SOT23 package. Both DAC outputs can source and sink 1mA to within 100mV of ground and VDD. The MAX5222 operates with a single +2.7V to +5.5V supply. The device uses a 3-wire serial interface, which operates at clock rates up to 25MHz and is compatible with SPI(tm), QSPI(tm), and MICROWIRE(tm) interface standards. The serial input shift register is 16 bits long and consists of 8 bits of DAC input data and 8 bits for DAC selection and shutdown control. DAC registers can be loaded independently or in parallel at the positive edge of active-low CS. The MAX5222's ultra-low power consumption and tiny 8-pin SOT23 package make it ideal for portable and battery-powered applications. Supply current is less than 1mA and drops below 1µA in shutdown mode. In addition, the reference input is disconnected from the REF pin during shutdown, further reducing the system's total power consumption.



# II. Manufacturing Information

| A. Description/Function:         | Dual, 8-Bit, Voltage-Output, Serial DAC in 8-Pin SOT23 |
|----------------------------------|--------------------------------------------------------|
| B. Process:                      | C6Y                                                    |
| C. Number of Device Transistors: | 1713                                                   |
| D. Fabrication Location:         | Japan                                                  |
| E. Assembly Location:            | Malaysia, Thailand                                     |
| F. Date of Initial Production:   | April 22, 2000                                         |

# III. Packaging Information

| A. Package Type:                                                            | 8-pin SOT23              |
|-----------------------------------------------------------------------------|--------------------------|
| B. Lead Frame:                                                              | Copper                   |
| C. Lead Finish:                                                             | 100% matte Tin           |
| D. Die Attach:                                                              | Conductive               |
| E. Bondwire:                                                                | Au (1 mil dia.)          |
| F. Mold Material:                                                           | Epoxy with silica filler |
| G. Assembly Diagram:                                                        | #05-0401-0519            |
| H. Flammability Rating:                                                     | Class UL94-V0            |
| I. Classification of Moisture Sensitivity per<br>JEDEC standard J-STD-020-C | Level 1                  |
| J. Single Layer Theta Jb:                                                   | 112*°C/W                 |
| K. Single Layer Theta Jc:                                                   | 80°C/W                   |
| L. Multi Layer Theta Ja:                                                    | N/A                      |
| M. Multi Layer Theta Jc:                                                    | N/A                      |

#### IV. Die Information

| A. Dimensions:             | 24 X 67 mils                                       |
|----------------------------|----------------------------------------------------|
| B. Passivation:            | $Si_3N_4/SiO_2$ (Silicon nitride/ Silicon dioxide) |
| C. Interconnect:           | Al with Ti/TiN Barrier                             |
| D. Backside Metallization: | None                                               |
| E. Minimum Metal Width:    | 0.6 microns (as drawn)                             |
| F. Minimum Metal Spacing:  | 0.6 microns (as drawn)                             |
| G. Bondpad Dimensions:     | 5 mil. Sq.                                         |
| H. Isolation Dielectric:   | SiO <sub>2</sub>                                   |
| I. Die Separation Method:  | Wafer Saw                                          |



| A. Quality Assurance Contacts:    | Don Lipps (Manager, Reliability Engineering)<br>Bryan Preeshl (Managing Director of QA)         |
|-----------------------------------|-------------------------------------------------------------------------------------------------|
| B. Outgoing Inspection Level:     | 0.1% for all electrical parameters guaranteed by the Datasheet.<br>0.1% For all Visual Defects. |
| C. Observed Outgoing Defect Rate: | < 50 ppm                                                                                        |
| D. Sampling Plan:                 | Mil-Std-105D                                                                                    |

### VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate ( $\lambda$ ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTF}} = \underbrace{1.83}_{192 \text{ x} 4340 \text{ x} 80 \text{ x} 2}$ (Chi square value for MTTF upper limit) (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

 $x = 13.7 \times 10^{-9}$ 

𝔅 = 13.7 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the C6Y Process results in a FIT Rate of 0.90 @ 25C and 15.55 @ 55C (0.8 eV, 60% UCL)

# B. E.S.D. and Latch-Up Testing (lot I55BFA008A, D/C 0234)

The DA85-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1500V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.



# Table 1 Reliability Evaluation Test Results

# MAX5222EKA+

| TEST ITEM            | TEST CONDITION                                    | FAILURE<br>IDENTIFICATION        | SAMPLE SIZE | NUMBER OF<br>FAILURES | COMMENTS             |
|----------------------|---------------------------------------------------|----------------------------------|-------------|-----------------------|----------------------|
| Static Life Test (No | ote 1)<br>Ta = 135°C<br>Biased<br>Time = 192 hrs. | DC Parameters<br>& functionality | 80          | 0                     | I55BFA008A, D/C 0234 |

Note 1: Life Test Data may represent plastic DIP qualification lots.