

RELIABILITY REPORT

FOR

MAX5035+ (A/B/C/D versions)

PLASTIC ENCAPSULATED DEVICES

May 21, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by		
Ken Wendel		
Quality Assurance		
Director, Reliability Engineering		

Conclusion

The MAX5035+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX5035 easy-to-use, high-efficiency, high-voltage, step-down DC-DC converter operates from an input voltage up to 76V and consumes only 270µA quiescent current at no load. This pulse-width modulated (PWM) converter operates at a fixed 125kHz switching frequency at heavy loads, and automatically switches to pulse-skipping mode to provide low quiescent current and high efficiency at light loads. The MAX5035 includes internal frequency compensation simplifying circuit implementation. The device uses an internal low-on-resistance, high-voltage, DMOS transistor to obtain high efficiency and reduce overall system cost. This device includes undervoltage lockout, cycle-by-cycle current limit, hiccup mode output short-circuit protection, and thermal shutdown. The MAX5035 delivers up to 1A output current. The output current may be limited by the maximum power dissipation capability of the package. External shutdown is included, featuring 10µA (typ) shutdown current. The MAX5035A/B/C versions have fixed output voltages of 3.3V, 5V, and 12V, respectively, while the MAX5035D features an adjustable output voltage from 1.25V to 13.2V. The MAX5035 is available in space-saving 8-pin SO and 8-pin plastic DIP packages and operates over the automotive (-40°C to +125°C) temperature range.

II. Manufacturing Information

1A, 76V, High-Efficiency MAXPower Step-Down DC-DC Converter A. Description/Function:

B. Process: BCD8

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: ATP Philippines, UTL Thailand, Unisem Malaysia

F. Date of Initial Production: October 17, 2003

III. Packaging Information

A. Package Type: 8-pin SOIC (N) 8-pin PDIP B. Lead Frame: Copper Copper

C. Lead Finish: 100% matte Tin 100% matte Tin D. Die Attach: Conductive Epoxy Conductive Epoxy E. Bondwire: Gold (1.3 mil dia.) Gold (1.3 mil dia.) F. Mold Material: Epoxy with silica filler Epoxy with silica filler G. Assembly Diagram: #05-9000-0596 #05-9000-0597 H. Flammability Rating: Class UL94-V0 Class UL94-V0 Level 1

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 170°C/W 110°C/W 40°C/W 40°C/W K. Single Layer Theta Jc:

L. Multi Layer Theta Ja: 128.4°C/W 36°C/W M. Multi Layer Theta Jc:

IV. Die Information

A. Dimensions: 85 X 145 mils

 Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide B. Passivation:

Aluminum/0.5% Cu C. Interconnect:

D. Backside Metallization: None

E. Minimum Metal Width: 3.0 microns (as drawn) F. Minimum Metal Spacing: 3.0 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq. SiO₂ H. Isolation Dielectric: I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 48 \times 2}$$
 (Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$x = 22.4 \times 10^{-9}$$

3 = 22.4 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the BCD8 Process results in a FIT Rate of 2.3 @ 25C and 39.6 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The NP25 die types have been found to have all pins able to withstand a transient pulse of:

HBM ESD: +/-1000 V per JEDEC JESD22-A114 CDM ESD: +/-750 V per JEDEC JESD22-C101

Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1Reliability Evaluation Test Results

MAX5035+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test ((Note 1)				
	Ta = 135°C	DC Parameters	48	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	·			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data