

RELIABILITY REPORT

FOR

MAX4701ETE+

PLASTIC ENCAPSULATED DEVICES

March 5, 2015

MAXIM INTEGRATED

160 RIO ROBLES SAN JOSE, CA 95134

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer

Conclusion

The MAX4701ETE+ successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

IDevice Description	IVDie Information
IIManufacturing Information	VQuality Assurance Information
IIIPackaging Information	VIReliability Evaluation
Attachments	

I. Device Description

A. General

The MAX4699/MAX4701/MAX4702 are low-voltage, single-supply CMOS analog switches. The MAX4699/MAX4701 are dual double-pole/double-throw (DPDT) switches with two control inputs that control two single-pole/double-throw (SPDT) switches each. The MAX4702 is a quad SPDT switch with one control input and one low-voltage digital logic power supply. These devices operate from a single +1.8V to +5.5V power supply. When powered from a +2.7V supply the MAX4699/MAX4701/MAX4702 offer a 75 on-resistance (RON), with 12 max RON flatness and 4 max matching between channels. Each switch has rail-to-rail signal handling, fast switching speeds of tON = 35ns, tOFF = 20ns, and a maximum 1nA of leakage current. The MAX4699/MAX4701 digital inputs are 1.8V-logic compatible when operated from a +3V supply. The MAX4702's digital inputs feature a 1.0V threshold when powered with a 1.5V logic supply. The MAX4699 is available in a space-saving 16-lead 4mm x 4mm TQFN package. The MAX4701/MAX4702 are available in space-saving 16-lead 3mm x 3mm TQFN 16-pin TSSOP packages.

II. Manufacturing Information

A. Description/Function: Low-Voltage, Dual DPDT/Quad SPDT Analog Switches in QFN

B. Process: **B8**

C. Number of Device Transistors:

D. Fabrication Location: California or Texas

E. Assembly Location: China, Malaysia, Philippines, Thailand

F. Date of Initial Production: July 28, 2001

III. Packaging Information

16-pin TQFN 3x3 A. Package Type:

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin D. Die Attach: Conductive E. Bondwire: Au (1 mil dia.) F. Mold Material: Epoxy with silica filler G. Assembly Diagram: #05-9000-1119 H. Flammability Rating: Class UL94-V0 Level 1

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

₩64°C/W J. Single Layer Theta Ja: Á₩6.9°C/W K. Single Layer Theta Jc: Æ48°C/W L. Multi Layer Theta Ja:

M. Multi Layer Theta Jc: Á6.9°C/W

IV. Die Information

A. Dimensions: 41X41 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: AI/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 0.8 microns (as drawn) F. Minimum Metal Spacing: 0.8 microns (as drawn)

G. Bondpad Dimensions:

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% for all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$x = 5.36 \times 10^{-9}$$

% = 5.36 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the B8 Process results in a FIT Rate of 0.01 @ 25C and 0.26 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (ESD lot I5G0AQ001E D/C 0120, Latch-Up lot S5F0BQ001A D/C 0344)

The AH76 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1Reliability Evaluation Test Results

MAX4701ETE+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (Note 1)				
	Ta = 135°C	DC Parameters	79	0	S5F0BQ001A, D/C 0344
	Biased	& functionality	80	0	I5F0AQ001E, D/C 0120
	Time = 192 hrs.	·	46	0	D5F1CQ003B, D/C 0505

Note 1: Life Test Data may represent plastic DIP qualification lots.