

RELIABILITY REPORT

FOR

MAX4690EAE+

PLASTIC ENCAPSULATED DEVICES

January 25, 2011

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by			
Sokhom Chum			
Quality Assurance			
Reliability Engineer			

Conclusion

The MAX4690EAE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX4680/MAX4690/MAX4700 dual analog switches feature low on-resistance of 1.25 max. On-resistance is matched between switches to 0.3 max and is flat (0.3 max) over the specified signal range. Each switch can handle Rail-to-Rail analog signals. Off-leakage current is only 5nA max at +85°C. These analog switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automatic test equipment or applications where current switching is required. They have low power requirements, require less board space, and are more reliable than mechanical relays. The MAX4680 has two NC (normally closed) switches, and the MAX4690 has two NO (normally open) switches. The MAX4700 has one NC and one NO switch and features guaranteed break-before-make switching. These devices operate from a +4.5V to +36V single supply or from ±4.5V to ±20V dual supplies. A separate logic supply pin guarantees TTL/CMOS-logic compatibility while operating across the entire supply voltage range.

II. Manufacturing Information

A. Description/Function: 1.25 , Dual, SPST, CMOS Analog Switch

B. Process: S5

C. Number of Device Transistors:

D. F abrication Location:

E. Assembly Location:

Philippines

F. Date of Initial Production:

July 24, 1999

III. Packaging Information

A. Package Type: 16-pin SSOP
B. Lead Frame: Copper

C. Lead Finish:

D. Die Attach:

Conductive

E. Bondwire:

Au (1.3 mil dia.)

F. Mold Material:

G. Assembly Diagram:

H. Flammability Rating:

100% matte Tin

Conductive

Epoxy with silica filler

#05-1201-0123

Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 140°C/W
K. Single Layer Theta Jc: 34°C/W
L. Multi Layer Theta Ja: N/A
M. Multi Layer Theta Jc: N/A

IV. Die Information

A. Dimensions: 140 X 163 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: AI/0.5%Cu with Ti/TiN Barrier

D. B ackside Metallization: None

E. Minimum Metal Width: 5.0 microns (as drawn)F. Minimum Metal Spacing: 5.0 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Is olation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. S ampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (\(\lambda \) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{\text{MTTF}} = \underbrace{\frac{4.04}{192 \times 4340 \times 80 \times 2}}_{\text{(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)}$$

$$\lambda = 30.3 \times 10^{-9}$$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S5 Process results in a FIT Rate of 0.09 @ 25C and 1.55 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot N77EAQ002F D/C 9948)

3. = 30.3 F.I.T. (60% confidence level @ 25°C)

The AH45-4 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1Reliability Evaluation Test Results

MAX4690EAE+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (No	ote 1) Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	80	1	N77BAQ001B, D/C 9928

Note 1: Life Test Data may represent plastic DIP qualification lots.