

RELIABILITY REPORT

FOR

MAX4395EUD+ (MAX4389/MAX4390/MAX4392-MAX4396)

PLASTIC ENCAPSULATED DEVICES

January 26, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX4395EUD+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX4389/MAX4390/MAX4392-MAX4396 family of op amps are unity-gain stable devices that combine high-speed performance, rail-to-rail outputs, and disable mode. These devices are targeted for applications where an input or an output is exposed to the outside world, such as video and communications. The MAX4389/MAX4390/MAX4392-MAX4396 operate from a single 4.5V to 11V supply or from dual ±2.25V to ±5.5V supplies. The common-mode input voltage range extends to the negative power-supply rail (ground in single-supply applications). The MAX4389/MAX4390/MAX4392-MAX4396 consume only 5.5mA of quiescent supply current per amplifier while achieving a 85MHz -3dB bandwidth, 27MHz 0.1dB gain flatness, and a 500V/µs slew rate. Disable mode sets the outputs to high impedance while consuming only 450µA of current. The MAX4389 single, MAX4393 dual, MAX4394 triple, and MAX4396 quad include disable capabilities. The MAX4389 and MAX4390 are available in ultra-small, 6-pin SC70 packages.

II. Manufacturing Information

A. Description/Function: Ultra-Small, Low-Cost, 85MHz Op Amps with Rail-to-Rail Outputs and Disable

B. Process: CB20

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: ATP Philippines, UTL Thailand, Carsem Malaysia

F. Date of Initial Production: January 26, 2002

III. Packaging Information

A. Package Type: 14-pin TSSOP
B. Lead Frame: Copper

C. Lead Finish:

D. Die Attach:

Conductive Epoxy

E. Bondwire:

Gold (1 mil dia.)

F. Mold Material:

G. Assembly Diagram:

#05-4301-0019

H. Flammability Rating:

Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 110°C/W
K. Single Layer Theta Jc: 30°C/W
L. Multi Layer Theta Ja: 100.4°C/W
M. Multi Layer Theta Jc: 30°C/W

IV. Die Information

A. Dimensions: 63 X 69 mils

B. Passivation: Si₃N₄ (Silicon nitride)

C. Interconnect: Gold
D. Backside Metallization: None

E. Minimum Metal Width: 2 microns (as drawn)F. Minimum Metal Spacing: 2 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = 1 \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 79 \times 2}$$
 (Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 13.6 \times 10^{-9}$$

 $\lambda = 13.6 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the CB20 Process results in a FIT Rate of 0.14 @ 25C and 2.14 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The VA04 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1Reliability Evaluation Test Results

MAX4395EUD+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (N	Note 1)				
·	Ta = 150°C Biased Time = 192 hrs.	DC Parameters & functionality	79	0	
Moisture Testing	(Note 2)				
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality	77	0	
Mechanical Stress	(Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles Method 1010	& functionality			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data