

RELIABILITY REPORT

FOR

MAX4066CSD+

PLASTIC ENCAPSULATED DEVICES

August 28, 2012

MAXIM INTEGRATED PRODUCTS

160 Rio Robles San Jose, CA 95134

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer

Conclusion

The MAX4066CSD+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	IVDie Information
IIManufacturing Information	VQuality Assurance Information
IIIPackaging Information	VIReliability Evaluation
Attachments	

I. Device Description

A. General

The MAX4066/MAX4066A quad, SPST, CMOS analog switches are designed to provide superior performance over the industry-standard devices. These new switches feature guaranteed operation from +2.0V to +16V and are fully specified at 3V, 5V, and 12V. Both parts offer 45 on-resistance and 2 channel-to-channel matching at 12V, plus 4 flatness over the specified signal range. Each device is controlled by TTL/CMOS input levels and can be used as a bilateral switch or multiplexer/demultiplexer. Low off leakage current (100pA for the MAX4066A) and low power consumption (0.5µW) make the MAX4066/ MAX4066A ideal for battery-operated equipment. These parts are also suitable for low-distortion audio applications. Both devices are available in 14-pin DIP and SO packages, as well as a 16-pin QSOP. ESD protection is greater than 2000V per Method 3015.7.

II. Manufacturing Information

A. Description/Function: Low-Cost, Low-Voltage, Quad, SPST, CMOS Analog Switch

B. Process: SG5

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: Malaysia, Thailand, Philippines

F. Date of Initial Production: Pre 1997

III. Packaging Information

A. Package Type: 150 mil 14L SOIC

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1.3 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-0301-0731 / B
H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 120°C/W
K. Single Layer Theta Jc: 37°C/W
L. Multi Layer Theta Ja: 84°C/W
M. Multi Layer Theta Jc: 34°C/W

IV. Die Information

A. Dimensions: 65 X 108 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 5.0 microns (as drawn)F. Minimum Metal Spacing: 5.0 microns (as drawn)

G. Bondpad Dimensions:

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Engineering)

Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$_{\lambda}$$
 = $\frac{1}{\text{MTTF}}$ = $\frac{1.83}{192 \times 4340 \times 80 \times 2}$ (Chi square value for MTTF upper limit)

 $_{\lambda}$ = 13.7 x 10⁻⁹
 $_{\lambda}$ = 13.7 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the SG5 Process results in a FIT Rate of 0.12 @ 25C and 2.04 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot NJRADA031A D/C 0411)

The AG78 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1Reliability Evaluation Test Results

MAX4066CSD+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (No	ote 1) Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	80	0	XJRAAQ001B, D/C 9534

Note 1: Life Test Data may represent plastic DIP qualification lots.