

RELIABILITY REPORT
FOR
MAX4004EUT+

PLASTIC ENCAPSULATED DEVICES

October 12, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX4004EUT+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX4004/MAX4006 precision, high-side, current monitors are specifically designed for monitoring photodiode current in fiber applications. They offer a connection point for the reference current and a monitor output that produces a signal proportional to the reference current. The monitor output of the MAX4004 is a current proportional to the reference current. The monitor output of the MAX4006 is a voltage proportional to the reference current. The current monitors have six decades of dynamic range and monitor reference current of 250nA to 2.5mA with better than 5% accuracy. The photodiode current can be monitored from 10nA to 10mA with reduced accuracy. The MAX4004/MAX4006 accept a +2.7V to +22V supply voltage, suitable for PIN photodiode applications. (For higher voltage applications, refer to the MAX4007/MAX4008 data sheet.) Internal current limiting (20mA, typ) protects the device against short-circuit-to-ground or excessive current conditions. A clamp diode protects the monitor output from overvoltage. Additionally, these devices feature thermal shutdown if the die temperature reaches +150°C. The MAX4004/MAX4006 are available in tiny, space-saving 6-pin SOT23 packages, and operate over the extended temperature range of -40°C to +85°C.

II. Manufacturing Information

A. Description/Function: High-Accuracy, High-Side Current Monitors in SOT23

Level 1

B. Process: BCD8

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: Malaysia, ThailandF. Date of Initial Production: January 25, 2003

III. Packaging Information

A. Package Type: 6-pin SOT23

B. Lead Frame:

C. Lead Finish: 100% matte Tin
D. Die Attach: Non-conductive Epoxy
E. Bondwire: Gold (1 mil dia.)

F. Mold Material: Epoxy with silica filler
 G. Assembly Diagram: #05-9000-0357
 H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

J. Single Layer Theta Jb: 115*°C/W
K. Single Layer Theta Jc: 80°C/W
L. Multi Layer Theta Ja: 74.6°C/W
M. Multi Layer Theta Jc: 6.1°C/W

IV. Die Information

A. Dimensions: 60 X 41 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 3.0 microns (as drawn)F. Minimum Metal Spacing: 3.0 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{\text{measure}} = \underbrace{\frac{1.83}{192 \times 4340 \times 48 \times 2}}_{\text{(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)}}_{\text{measure}}$$

$$\lambda = 22.4 \times 10^{-9}$$

 λ = 22.4 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the BCD8 Process results in a FIT Rate of 0.06 @ 25C and 1.08 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The OY13 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1Reliability Evaluation Test Results

MAX4004EUT+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	48	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	•			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data