MAX3850EGJ Rev. A

RELIABILITY REPORT

FOR

MAX3850EGJ

PLASTIC ENCAPSULATED DEVICES

August 23, 2002

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by

201

Jim Pedicord Quality Assurance Reliability Lab Manager

Reviewed by

!Vull

Bryan J. Preeshl Quality Assurance Executive Director

Conclusion

The MAX3850 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description II.Manufacturing Information III.Packaging Information IV.Die Information V.Quality Assurance Information VI.Reliability Evaluation

.....Attachments

I. Device Description

A. General

The MAX3850 is a +3.3V DC-coupled laser driver for SDH/SONET applications up to 2.7Gbps. The device accepts differential data and clock inputs and provides bias and modulation currents for driving a laser. If a clock signal is available, a synchronizing input latch can be used to reduce jitter. An automatic power-control (APC) feedback loop is incorporated to maintain a constant average optical power over temperature and lifetime. The wide modulation current range of 5mA to 60mA (up to 80mA AC-coupled) and bias current of 1mA to 100mA are easy to program, making this product ideal for SDH/SONET applications. The MAX3850 also provides laser current-enable control, two current monitors that are directly proportional to the laser bias and modulation currents, and a failure-monitor output to indicate when the APC loop is unable to maintain the average optical power. Designed to be DC-coupled to the laser with a supply voltage of only 3.3V, the MAX3850 greatly simplifies interface requirements. The MAX3850 is available in a small 32-pin QFN package as well as dice.

B. Absolute Maximum Ratings

ltem	<u>Rating</u>
Supply Voltage, VCC Current into BIAS Current into OUT+, OUT- Current into MD	-0.5V to +4.0V -20mA to +150mA -20mA to +100mA -5mA to +5mA
Voltage at DATA+, DATA-, CLK+, CLK-, ENABLE, LATCH, FAIL , BIASMON, MODMON, CAPC,	
MODSET, BIASMAX, APCSET	-0.5V to (VCC + 0.5V)
Voltage at APCFILT	-0.5V to +3.0V
Voltage at OUT+, OUT-	0.4V to 4.8V
Voltage at BIAS	1.0V to (VCC + 0.5V)
Storage Temperature Range	-65°C to +165°C
Operating Junction Temperature Range	-55°C to +150°C
Processing Temperature (die)	+400°C
Lead Temperature (soldering, 10s)	+300°C
Continuous Power Dissipation (TA = $+85^{\circ}$ C)	
32-Pin QFN	1384mW
Derates above +85°C	
32-Pin QFN	21.1mW/°C

II. Manufacturing Information

A. Description/Function:	2.7Gbps, +3.3V DC-Coupled Laser Driver
B. Process:	GST3
C. Number of Device Transistors:	1749
D. Fabrication Location:	Oregon, USA
E. Assembly Location:	Korea
F. Date of Initial Production:	January, 2001

III. Packaging Information

A. Package Type:	32-Lead QFN
B. Lead Frame:	Copper
C. Lead Finish:	Solder Plate
D. Die Attach:	Silver-filled epoxy
E. Bondwire:	Gold (1.2 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	Buildsheet # 05-7001-0616
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112:	Level 1

IV. Die Information

A. Dimensions:	70 x 83 mils
B. Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)
C. Interconnect:	Au
D. Backside Metallization:	None
E. Minimum Metal Width:	Metal1: 1.2; Metal2: 1.2; Metal3: 2.8; Metal4: 5.6 microns (as drawn)
F. Minimum Metal Spacing:	Metal1: 1.3; Metal2: 1.2; Metal3: 2.6; Metal4: 2.6 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

Α.	Quality Assurance Contacts:	Jim Pedicord	(Reliability Lab Manager)
		Bryan Preeshl	(Executive Director of QA)
		Kenneth Huening	(Vice President)
В.		0.1% for all electri 0.1% For all Visu	cal parameters guaranteed by the Datasheet. al Defects.

- C. Observed Outgoing Defect Rate: < 50 ppm
- D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in **Table 1**. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \text{ x } 9823 \text{ x } 45 \text{ x } 2} \text{ (Chi square value for MTTF upper limit)}_{\text{Temperature Acceleration factor assuming an activation energy of 0.8eV}$$
$$\lambda = 10.78 \text{ x } 10^{-8} \qquad \lambda = 10.78 \text{ F.I.T. (60\% confidence level @ 25°C)}$$

This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. The Burn-In Schematic #06-7065 shows the static circuit used for this test. Maxim performs failure analysis on rejects from lots exceeding this level. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (**RR-1M**).

B. Moisture Resistance Tests

Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard 85°C/85%RH or HAST tests are performed quarterly per device/package family.

C. E.S.D. and Latch-Up Testing

The HT23 die type has been found to have all pins able to withstand a transient pulse of \pm 200V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of \pm 250mA.

Table 1Reliability Evaluation Test Results

MAX3850EGJ

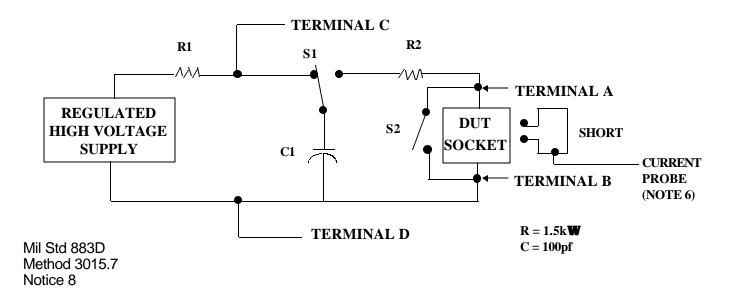
TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Tes	t (Note 1)			
	Ta = 150°C Biased Time = 192 hrs.	DC Parameters & functionality	45	0
Moisture Testi	ng (Note 2)			
Pressure Pot	Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs.	DC Parameters & functionality	77	0
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality	77	0
Mechanical Str	ress (Note 2)			
Temperature Cycle	-65°C/150°C 1000 Cycles Method 1010	DC Parameters	77	0

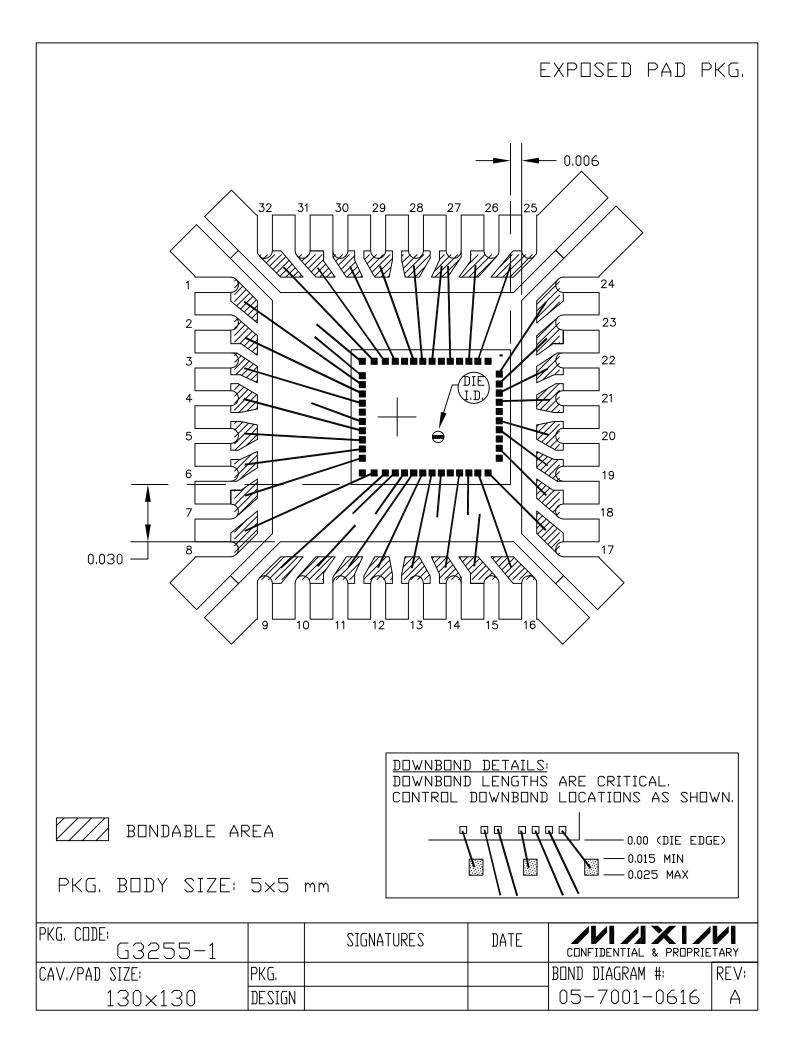
Note 1: Life Test Data may represent plastic DIP qualification lots.

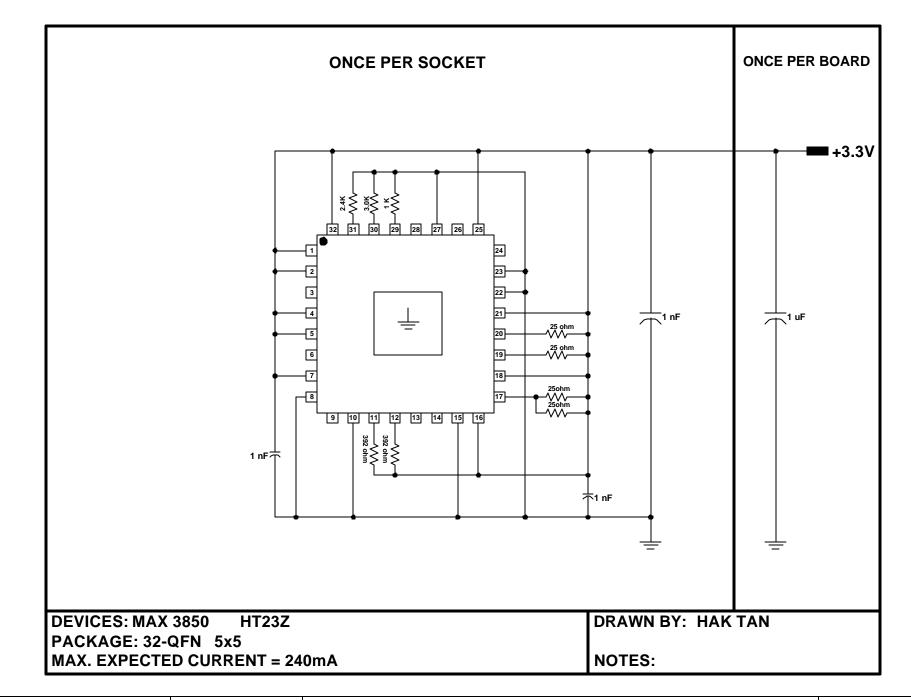
Note 2: Generic process/package data.

Attachment #1

	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except V _{PS1} <u>3/</u>	All V _{PS1} pins
2.	All input and output pins	All other input-output pins


	TABLE II.	Pin combination to be tested.	1/ 2/
--	-----------	-------------------------------	-------


- 1/ Table II is restated in narrative form in 3.4 below.
- $\overline{2}$ / No connects are not to be tested.
- $\frac{2i}{3}$ Repeat pin combination I for each named Power supply and for ground


(e.g., where V_{PS1} is V_{DD} , V_{CC} , V_{SS} , V_{BB} , GND, $+V_{S}$, $-V_{S}$, V_{REF} , etc).

3.4 <u>Pin combinations to be tested.</u>

- a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
- b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., V_{SS1}, or V_{SS2} or V_{SS3} or V_{CC1}, or V_{CC2}) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
- c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

DOCUMENT I.D. 06-7065