

RELIABILITY REPORT FOR MAX3680EAI+ PLASTIC ENCAPSULATED DEVICES

October 7, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX3680EAI+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information

.....Attachments

I. Device Description

A. General

The MAX3680/MAX3680A deserializer is ideal for converting 622Mbps serial data to 8-bit-wide, 77Mbps parallel data in ATM and SDH/SONET applications. Operating from a single +3.3V supply, this device accepts PECL serial clock and data inputs, and delivers TTL clock and data outputs. The MAX3680 also provides a TTL synchronization input that enables data realignment and reframing. The MAX3680/MAX3680A is available in the extended-industrial temperature range (-40°C to +85°C), in a 28-pin SSOP package.

II. Manufacturing Information

A. Description/Function:+3.3V, 622Mbps, SDH/SONET 1:8 Deserializer with TTL OutputsB. Process:GST2C. Number of Device Transistors:1346D. Fabrication Location:OregonE. Assembly Location:Philippines, MalaysiaF. Date of Initial Production:April 04, 1997

III. Packaging Information

A. Package Type:	28-pin SSOP
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive Epoxy
E. Bondwire:	Gold (1.3 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-7001-0211
H. Flammability Rating:	Class UL94-V0
 Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C 	Level 1
J. Single Layer Theta Ja:	120°C/W
K. Single Layer Theta Jc:	26°C/W
L. Multi Layer Theta Ja:	68°C/W
M. Multi Layer Theta Jc:	25°C/W

IV. Die Information

A. Dimensions:	61 X 62 mils
B. Passivation:	Si ₃ N ₄ (Silicon nitride)
C. Interconnect:	Au
D. Backside Metallization:	None
E. Minimum Metal Width:	2 microns (as drawn)
F. Minimum Metal Spacing:	2 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{\frac{1.83}{192 \text{ x } 4340 \text{ x } 46 \text{ x } 2}}_{\text{(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)}$ $\lambda = 10.69 \text{ x } 10^{-9}$ $\lambda = 10.69 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the GST2 Process results in a FIT Rate of 0.08 @ 25C and 1.42 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The HF13 die type has been found to have all pins able to withstand a HBM transient pulse of $\pm 1000V$ per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of ± 250 mA.

Table 1 Reliability Evaluation Test Results

MAX3680EAI+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 150°C	DC Parameters	46	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	g (Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stre	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data