

RELIABILITY REPORT

FOR

MAX3460ESD+

PLASTIC ENCAPSULATED DEVICES

March 28, 2011

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer

Conclusion

The MAX3460ESD+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	IVDie Information
IIManufacturing Information	VQuality Assurance Information
IIIPackaging Information	VIReliability Evaluation
Attachments	

I. Device Description

A. General

The MAX3460-MAX3464 are high-speed differential bus transceivers for RS-485 and RS-422 communications. They are designed to meet TIA/EIA-422-B, TIA/EIA-485-A, V.11, and X.27 standards. The transceiver complies with the PROFIBUS specification providing +2.1V output level with a 54 load, 20Mbps data rate, and output skew less than 2ns. Each part contains one three-state differential line driver and one differential input line receiver. The devices operate from a +5V supply and feature true fail-safe circuitry, which guarantees a logic-high receiver output when the receiver inputs are open or shorted. This enables all receiver outputs on a terminated bus to output logic highs when all transmitters are disabled. All devices feature a 1/4 standard unit load receiver input impedance that allows 128 transceivers on the bus. Driver and receiver propagation delays are guaranteed under 20ns for multidrop, clock distribution applications. Drivers are short-circuit current limited and are protected against excessive power dissipation by thermal shutdown circuitry. The driver and receiver feature active-high and active-low enables, respectively, that can be connected together externally to serve as a direction control.

II. Manufacturing Information

A. Description/Function: +5V, Fail-Safe, 20Mbps, PROFIBUS RS-485/RS-422 Transceivers

B. Process: B8

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: Malaysia, Philippines, Thailand

F. Date of Initial Production: October 27, 2001

III. Packaging Information

A. Package Type: 14-pin SOIC (N)

B. Lead Frame: Copper

C. Lead Finish:

D. Die Attach:

Conductive

E. Bondwire:

Au (1 mil dia.)

F. Mold Material:

Epoxy with silica filler

G. Assembly Diagram:

#05-2601-0051

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 120°C/W
K. Single Layer Theta Jc: 37°C/W
L. Multi Layer Theta Ja: 84°C/W
M. Multi Layer Theta Jc: 34°C/W

IV. Die Information

A. Dimensions: 70 X 70 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: AI/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 0.8 microns (as drawn)F. Minimum Metal Spacing: 0.8 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Engineering)

Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (3) is calculated as follows:

$$_{\lambda}$$
 = $\frac{1}{\text{MTTF}}$ = $\frac{1.83}{192 \times 4340 \times 157 \times 2}$ (Chi square value for MTTF upper limit)

 $_{\lambda}$ = 7.0 x 10⁻⁹
 $_{\lambda}$ = 7.0 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the B8 Process results in a FIT Rate of 0.06 @ 25C and 0.99 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot I2Y0CQ002A D/C 0244)

The RT28 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1500V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1Reliability Evaluation Test Results

MAX3460ESD+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS		
Static Life Test (Note 1)							
	Ta = 135°C	DC Parameters	77	0	I2Y0CQ002A, D/C 0244		
	Biased	& functionality	80	0	I2Y0BQ001B, D/C 0132		
	Time = 192 hrs.						

Note 1: Life Test Data may represent plastic DIP qualification lots.