

RELIABILITY REPORT
FOR
MAX3386ECUP+

PLASTIC ENCAPSULATED DEVICES

December 22, 2008

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by	
Ken Wendel	
Quality Assurance	
Director, Reliability Engineering	

Conclusion

The MAX3386ECUP+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX3386E 3V-powered EIA/TIA-232 and V.28/V.24 is a communications interface with low power requirements, high data-rate capabilities, and enhanced electrostatic discharge (ESD) protection. The MAX3386E has two receivers and three transmitters. All RS-232 inputs and outputs are protected to ±25kV using the IEC 1000-4-2 Air-Gap Discharge method, ±8kV using the IEC 1000-4-2 Contact Discharge method, and ±15kV using the Human Body Model. A proprietary low-dropout transmitter output stage enables true RS-232 performance from a +3.0V to +5.5V supply with a dual charge pump. The charge pump requires only four small 0.1µF capacitors for operation from a +3.3V supply. The MAX3386E is capable of running at data rates up to 250kbps while maintaining RS-232 compliant output levels. The MAX3386E has a unique VL pin that allows interoperation in mixed-logic voltage systems. Both input and output logic levels are pin programmable through the VL pin. The MAX3386E is available in a space-saving TSSOP package.

II. Manufacturing Information

A. Description/Function: 3.0V, ±15kV ESD-Protected RS-232 Transceivers for PDAs and Cell Phones

B. Process: S3

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: ATP PhilippinesF. Date of Initial Production: July 24, 1999

III. Packaging Information

A. Package Type: 20-pin TSSOP
B. Lead Frame: Copper

C. Lead Finish:

D. Die Attach:

Conductive Epoxy

E. Bondwire:

Gold (1 mil dia.)

F. Mold Material:

G. Assembly Diagram:

#05-2601-0001

H. Flammability Rating:

Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 91°C/W
K. Single Layer Theta Jc: 20°C/W
L. Multi Layer Theta Ja: 73.8°C/W
M. Multi Layer Theta Jc: 20°C/W

IV. Die Information

A. Dimensions: 92 X 179 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

E. Minimum Metal Width: 3.0 microns (as drawn)F. Minimum Metal Spacing: 3.0 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{\text{measure}} = \underbrace{\frac{1.83}{192 \times 4340 \times 219 \times 2}}_{\text{(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)}}_{\text{measure}}$$

 λ = 4.9 F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the S3 Process results in a FIT Rate of 3.6 @ 25C and 66.0 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The RT03 die type has been found to have all pins able to withstand a HBM transient pulse of +/-3000 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1

Reliability Evaluation Test Results

MAX3386ECUP+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C Biased	DC Parameters & functionality	219	0	
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	·			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data