

RELIABILITY REPORT

FOR

MAX3120CSA+

PLASTIC ENCAPSULATED DEVICES

October 26, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX3120CSA+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

The MAX3120 IrDA 1.2-compatible infrared transceiver is optimized for battery-powered, space-constrained applications. It consumes only 120μA while supporting data rates up to 115kbps over a wide 3V to 5.5V operating range, and features a 10nA shutdown mode to further extend battery life. The MAX3120 reduces the space required for IrDA applications by requiring a minimum of external components: photodiode, infrared LED, and current-setting resistor. Optical components are external to allow maximum flexibility in PC board design. The MAX3120 is available in 8-pin μMAX® and SO packages. The μMAX package consumes half the board space of an 8-pin SO.

II. Manufacturing Information

A. Description/Function: Low-Profile 3V, 120µA IrDA Infrared Transceiver

S12 B. Process:

C. Number of Device Transistors:

D. Fabrication Location: Oregon, California or Texas E. Assembly Location: Malaysia, Philippines, Thailand

F. Date of Initial Production: Pre 1997

III. Packaging Information

A. Package Type: 8-pin SOIC (N) B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin D. Die Attach: Conductive Epoxy E. Bondwire: Gold (1.3 mil dia.) F. Mold Material: Epoxy with silica filler G. Assembly Diagram: #05-1901-0191 H. Flammability Rating: Class UL94-V0 Level 1

I. Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 170°C/W K. Single Layer Theta Jc: 40°C/W L. Multi Layer Theta Ja: 136°C/W M. Multi Layer Theta Jc: 38°C/W

IV. Die Information

A. Dimensions: 61 X 40 mils

B. Passivation: Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 1.2 microns (as drawn) F. Minimum Metal Spacing: 1.2 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq. H. Isolation Dielectric: SiO₂ I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (\(\lambda\)) is calculated as follows:

$$\lambda = 1 \over MTTF$$
 = $4.05 \over 192 \times 4340 \times 239 \times 2$ (Chi square value for MTTF upper limit)

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 9.92 \times 10^{-9}$$

 $\lambda = 9.92 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S12 Process results in a FIT Rate of 0.17 @ 25C and 3.00 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The RS65 die type has been found to have all pins able to withstand a HBM transient pulse of +/-600 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1Reliability Evaluation Test Results

MAX3120CSA+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	239	1	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data