

RELIABILITY REPORT FOR MAX2599ELB+T PLASTIC ENCAPSULATED DEVICES

May 26, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Richard Aburano
Quality Assurance
Manager, Reliability Operations

Conclusion

The MAX2599ELB+T successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

- I.Device Description V.Quality Assurance Information
- II.Manufacturing Information
- VI.Reliability Evaluation
- III.Packaging Information
-Attachments

IV.Die Information

I. Device Description

A. General

The MAX2599 complete monolithic direct-conversion I/Q transmitter is designed for WCDMA/HSPA femto basestation transmitter applications. The device is TS25.104 compliant in the 2110MHz to 2170MHz band. The unique bits-to-RF architecture of the MAX2599 integrates a power amplifier (PA), a quadrature mixer, variable-gain RF and baseband amplifiers, baseband filters, I and Q digital-to-analog converters (DACs), and a fractional-N frequency synthesizer for local oscillator (LO) generation. Data is transferred from the baseband/DSP to the radio by a digital 1-bit sigma-delta modulated I and Q bitstream through an LVDS-like interface. The operating mode of the radio is fully programmable by a 3-wire serial interface. The MAX2599 is specified for operation in the extended -40°C to +85°C temperature range and is available in a 9mm x 9mm x 1.4mm fcLGA package with exposed paddle (EP).

Maxim Integrated Products. All rights reserved.

II. Manufacturing Information

A. Description/Function:	Femto Basestation Bits-to-RF Radio Transmitter
B. Process:	MB3

California

Japan and Malaysia

February 13, 2008

- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	64-pin Flipchip LGA
B. Lead Frame:	N/A
C. Lead Finish:	N/A
D. Die Attach:	None
E. Bondwire:	N/A (N/A mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-9000-2888
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 3
J. Single Layer Theta Ja:	°C/W
K. Single Layer Theta Jc:	°C/W
L. Multi Layer Theta Ja:	33.6°C/W
M. Multi Layer Theta Jc:	16.5°C/W

IV. Die Information

A. Dimensions:	144.9 X 193.7 mils
B. Passivation:	BCB
C. Interconnect:	Al with top layer 100% Cu
D. Backside Metallization:	None
E. Minimum Metal Width:	0.35µm
F. Minimum Metal Spacing:	0.35µm
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

٧.	Quality	Assurance	Information
----	---------	-----------	-------------

A. Quality Assurance Contacts:	Richard Aburano (Manager, Reliability Operations) Bryan Preeshl (Managing Director of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the MB3 Process results in a FIT Rate of 0.08 @ 25C and 1.33 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

B. E.S.D. and Latch-Up Testing

The WC39-7 die type has been found to have all pins able to withstand a HBM transient pulse of +/- 1000V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of 250mA.

Table 1 Reliability Evaluation Test Results

MAX2599ELB+T

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (N	lote 1)				
	Ta = 135°C	DC Parameters	268	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
HAST	Ta = 130°C	DC Parameters	45	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stress	(Note 2)				
Temperature	-55°C/125°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	-			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data