

RELIABILITY REPORT FOR MAX2470EUT+ PLASTIC ENCAPSULATED DEVICES

November 20, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX2470EUT+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

- I.Device Description V.Quality Assura
 II.Manufacturing Information VI.Reliability Eval
- III.Packaging Information
-Attachments

V.Quality Assurance Information VI.Reliability Evaluation

I. Device Description

A. General

The MAX2470/MAX2471 are flexible, low-cost, high reverse-isolation buffer amplifiers for applications with discrete and module-based VCO designs. Both feature differential 50 outputs for driving a single differential (balanced) load or two separate single-ended (unbalanced) 50 loads. The MAX2470 offers a single-ended input and has two selectable frequency ranges of operation: 10MHz to 500MHz and 10MHz to 200MHz. The MAX2471 offers a differential input and operates from 10MHz to 500MHz. The MAX2470/MAX2471 also feature high input impedance for maximum flexibility, enabling them to be used with a variety of oscillator topologies. High reverse isolation combined with low supply current make them ideal for applications requiring high performance with low power. These devices are also ideal for use as active baluns. The MAX2470 converts a single-ended input to a differential output. The MAX2471 is useful as a differential buffer stage or to convert from a differential input to two single-ended ouputs. The MAX2470 operates from a single +2.7V to +5.5V supply. At -5dBm output power, it consumes 5.5mA in the high-frequency range and only 3.6mA in the low-frequency range. The MAX2471 operates from a +2.7V to +5.5V single supply and consumes 5.5mA. both devices are available in ultra-small SOT23-6 plastic packages, requiring minimal board space.

II. Manufacturing Information

 A. Description/Function:
 10MHz to 500MHz, VCO Buffer Amplifiers with Differential Outputs

 B. Process:
 CB2

Malaysia, Philippines, Thailand

Oregon

January 22, 1999

- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	6-pin SOT23
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive
E. Bondwire:	Au (1 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-7001-0356
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Jb:	115*°C/W
K. Single Layer Theta Jc:	80°C/W

IV. Die Information

Α.	Dimensions:	28 X 39 mils
В.	Passivation:	Si ₃ N ₄ (Silicon nitride)
C.	Interconnect:	Au
D.	Backside Metallization:	None
E.	Minimum Metal Width:	2 microns (as drawn)
F.	Minimum Metal Spacing:	2 microns (as drawn)
G.	Bondpad Dimensions:	5 mil. Sq.
Н.	Isolation Dielectric:	SiO ₂
I.	Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A.	Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering)		
		Bryan Preeshl (Managing Director of QA)		
Β.	Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.		
		0.1% For all Visual Defects.		
C.	Observed Outgoing Defect Rate:	< 50 ppm		
D.	Sampling Plan:	Mil-Std-105D		

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (³/₄) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{\frac{1.83}{192 \times 4340 \times 48 \times 2}}_{(\text{where } 4340 = \text{Temperature Acceleration factor assuming an activation energy of 0.8eV})$ $\lambda = 22.4 \times 10^{-9}$ $\lambda = 22.4 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the CB2 Process results in a FIT Rate of 0.14 @ 25C and 2.48 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The WR56-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2000 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1 Reliability Evaluation Test Results

MAX2470EUT+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES		
Static Life Test (Note 1)						
	Ta = 150°C	DC Parameters	48	0		
	Biased	& functionality				
	Time = 192 hrs.					
Moisture Testing (Note 2)						
HAST	Ta = 130°C	DC Parameters	77	0		
	RH = 85%	& functionality				
	Biased					
	Time = 96hrs.					
Mechanical Stress (Note 2)						
Temperature	-65°C/150°C	DC Parameters	77	0		
Cycle	1000 Cycles	& functionality				
	Method 1010					

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data