

RELIABILITY REPORT FOR MAX2410EEI+ PLASTIC ENCAPSULATED DEVICES

October 26, 2009

# MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

| Approved by                       |
|-----------------------------------|
| Ken Wendel                        |
| Quality Assurance                 |
| Director, Reliability Engineering |



#### Conclusion

The MAX2410EEI+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

#### **Table of Contents**

- I. .....Device Description V. .....Quality Assurance Information II. ......Manufacturing Information
- III. .....Packaging Information
- .....Attachments

VI. .....Reliability Evaluation IV. .....Die Information

#### I. Device Description

A. General

The MAX2410 performs the RF front-end transmit/receive function in time-division-duplex (TDD) communication systems. It operates over a wide frequency range and is optimized for RF frequencies around 1.9GHz. Applications include most popular cordless and PCS standards. The MAX2410 contains a low-noise amplifier (LNA), a downconverter mixer, a local-oscillator (LO) buffer, an upconverter mixer, and a variable-gain power-amplifier (PA) driver in a low-cost, plastic surface-mount package. The LNA has a 2.4dB (typical) noise figure and a -10dBm input third-order intercept point (IP3). The downconverter mixer has a low 9.8dB noise figure and a 3.3dBm IP3. Image and LO filtering are implemented off-chip for maximum flexibility. The PA driver has 15dB of gain, which can be reduced over a 35dB (typical) range. Power consumption is only 60mW in receive mode or 90mW in transmit mode and drops to less than 0.3µW in shutdown mode. A similar part, the MAX2411A, features the same functionality as the MAX2410 but offers a differential bidirectional (transmit and receive) IF port. This allows the use of a single IF filter for transmit (TX) and receive (RX). For applications requiring a receive function only, consult the data sheet for the MAX2406, a low-cost downconverter with low-noise amplifier.



II. Manufacturing Information

- A. Description/Function:
   Low-Cost RF Up/Downconverter with LNA and PA Driver

   B. Process:
   GST2

   C. Number of Device Transistors:
  - Oregon
  - Malaysia, Philippines, Thailand December 19, 1997
- F. Date of Initial Production:

D. Fabrication Location:

E. Assembly Location:

# III. Packaging Information

| A. Package Type:                                                            | 28-pin QSOP              |
|-----------------------------------------------------------------------------|--------------------------|
| B. Lead Frame:                                                              | Copper                   |
| C. Lead Finish:                                                             | 100% matte Tin           |
| D. Die Attach:                                                              | Conductive Epoxy         |
| E. Bondwire:                                                                | Gold (1.3 mil dia.)      |
| F. Mold Material:                                                           | Epoxy with silica filler |
| G. Assembly Diagram:                                                        | #05-7001-0286            |
| H. Flammability Rating:                                                     | Class UL94-V0            |
| I. Classification of Moisture Sensitivity per<br>JEDEC standard J-STD-020-C | Level 1                  |
| J. Single Layer Theta Ja:                                                   | 93°C/W                   |
| K. Single Layer Theta Jc:                                                   | 27°C/W                   |
| L. Multi Layer Theta Ja:                                                    | 79.3°C/W                 |
| M. Multi Layer Theta Jc:                                                    | 27°C/W                   |

#### IV. Die Information

| A. Dimensions:             | 55 X 73 mils                                     |
|----------------------------|--------------------------------------------------|
| B. Passivation:            | Si <sub>3</sub> N <sub>4</sub> (Silicon nitride) |
| C. Interconnect:           | Au                                               |
| D. Backside Metallization: | None                                             |
| E. Minimum Metal Width:    | 2 microns (as drawn)                             |
| F. Minimum Metal Spacing:  | 2 microns (as drawn)                             |
| G. Bondpad Dimensions:     | 5 mil. Sq.                                       |
| H. Isolation Dielectric:   | SiO <sub>2</sub>                                 |
| I. Die Separation Method:  | Wafer Saw                                        |



#### V. Quality Assurance Information

| Α. | Quality Assurance Contacts:    | Ken Wendel (Director, Reliability Engineering)                  |
|----|--------------------------------|-----------------------------------------------------------------|
|    |                                | Bryan Preeshl (Managing Director of QA)                         |
| В. | Outgoing Inspection Level:     | 0.1% for all electrical parameters guaranteed by the Datasheet. |
|    |                                | 0.1% For all Visual Defects.                                    |
| C. | Observed Outgoing Defect Rate: | < 50 ppm                                                        |
| D. | Sampling Plan:                 | Mil-Std-105D                                                    |

## VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (  $\lambda$ ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{\frac{1.83}{192 \times 4340 \times 45 \times 2}}_{(\text{where } 4340 = \text{Temperature Acceleration factor assuming an activation energy of 0.8eV})$  $\lambda = 23.9 \times 10^{-9}$  $\lambda = 23.9 \text{ F.I.T. (60\% confidence level @ 25°C)}$ 

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the GST2 Process results in a FIT Rate of 0.06 @ 25C and 1.10 @ 55C (0.8 eV, 60% UCL)

#### B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The WR27-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-500 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.



# Table 1 Reliability Evaluation Test Results

### MAX2410EEI+

| TEST ITEM        | TEST CONDITION  | FAILURE<br>IDENTIFICATION | SAMPLE SIZE | NUMBER OF<br>FAILURES |  |
|------------------|-----------------|---------------------------|-------------|-----------------------|--|
| Static Life Test | (Note 1)        |                           |             |                       |  |
|                  | Ta = 150°C      | DC Parameters             | 45          | 0                     |  |
|                  | Biased          | & functionality           |             |                       |  |
|                  | Time = 192 hrs. |                           |             |                       |  |
| Moisture Testing | (Note 2)        |                           |             |                       |  |
| HAST             | Ta = 130°C      | DC Parameters             | 77          | 0                     |  |
|                  | RH = 85%        | & functionality           |             |                       |  |
|                  | Biased          |                           |             |                       |  |
|                  | Time = 96hrs.   |                           |             |                       |  |
| Mechanical Stres | ss (Note 2)     |                           |             |                       |  |
| Temperature      | -65°C/150°C     | DC Parameters             | 77          | 0                     |  |
| Cycle            | 1000 Cycles     | & functionality           |             |                       |  |
| •                | Method 1010     |                           |             |                       |  |

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data