

RELIABILITY REPORT

FOR

MAX2064ETM+

PLASTIC ENCAPSULATED DEVICES

January 18, 2011

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by			
Richard Aburano			
Quality Assurance			
Manager, Reliability Operations			

Conclusion

The MAX2064ETM+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

The MAX2064 high-linearity, dual analog variable-gain amplifier (VGA) operates in the 50MHz to 1000MHz frequency range. Each analog attenuator is controlled using an external voltage, or through the SPI(tm)-compatible interface using an on-chip 8-bit DAC. Since each of the stages has its own external RF input and RF output, this component can be configured to either optimize noise figure (NF) (amplifier configured first) or OIP3 (amplifier last). The device's performance features include 24dB amplifier gain (amplifier only), 4.4dB NF at maximum gain (includes attenuator insertion losses), and a high OIP3 level of +41dBm. Each of these features makes the device an ideal VGA for multipath receiver and transmitter applications. In addition, the device operates from a single +5V supply with full performance, or a +3.3V supply for an enhanced power-savings mode with lower performance. The device is available in a compact 48-pin TQFN package (7mm x 7mm) with an exposed pad. Electrical performance is guaranteed over the extended temperature range, from TC = -40°C to +85°C.

II. Manufacturing Information

A. Description/Function: 50MHz to 1000MHz, High-Linearity, Serial/Analog-Controlled VGA

B. Process: MB3C. Number of Device Transistors: 15837D. Fabrication Location: California

E. Assembly Location: China and ThailandF. Date of Initial Production: December 14, 2010

III. Packaging Information

A. Package Type: 48-pin TQFN 7x7

B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1 mil dia.)

F. Mold Material: Epoxy with silica filler
 G. Assembly Diagram: #05-9000-3892
 H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 38°C/W
K. Single Layer Theta Jc: 1.3°C/W
L. Multi Layer Theta Ja: 26°C/W
M. Multi Layer Theta Jc: 1.3°C/W

IV. Die Information

A. Dimensions: 126X122 mils

B. Passivation: BCB

C. Interconnect: Al with top layer 100% Cu

D. Backside Metallization: None
E. Minimum Metal Width: 0.35μm
F. Minimum Metal Spacing: 0.35μm
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Richard Aburano (Manager, Reliability Operations)

Bryan Preeshl (Vice President of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = 1 = 1.83$$
 (Chi square value for MTTF upper limit)
 $192 \times 4340 \times 47 \times 2$

(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 23.4 \times 10^{-9}$$

 $\lambda = 23.4 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the MB3 Process results in a FIT Rate of 0.08 @ 25C and 1.33 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot SXMZBQ001A, D/C 1025)

The CR49 die type has been found to have all pins able to withstand a HBM transient pulse of +/- 2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/- 100mA and overvoltage per JEDEC JESD78.

Table 1Reliability Evaluation Test Results

MAX2064ETM+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (No	ote 1) Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	47	0	SXMZBQ001E, D/C 1024

Note 1: Life Test Data may represent plastic DIP qualification lots.