

RELIABILITY REPORT FOR MAX1952ESA+

PLASTIC ENCAPSULATED DEVICES

April 8, 2014

MAXIM INTEGRATED

160 RIO ROBLES SAN JOSE, CA 95134

Approved by				
Sokhom Chum				
Quality Assurance				
Reliability Engineer				

Conclusion

The MAX1952ESA+ successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

- I.Device Description
- II.Manufacturing Information
- IV.Die Information
- V.Quality Assurance Information
- III.Packaging Information
- VI.Reliability Evaluation

- I. Device Description
 - A. General

.....Attachments

The MAX1951/MAX1952 high-efficiency, DC-to-DC step-down switching regulators deliver up to 2A of output current. The devices operate from an input voltage range of 2.6V to 5.5V and provide an output voltage from 0.8V to VIN, making the MAX1951/MAX1952 ideal for on-board postregulation applications. The MAX1951 total output error is less than 1% over load, line, and temperature. The MAX1951/MAX1952 operate at a fixed frequency of 1MHz with an efficiency of up to 94%. The high operating frequency minimizes the size of external components. Internal soft-start control circuitry reduces inrush current. Short-circuit and thermal-overload protection improve design reliability. The MAX1951 provides an adjustable output from 0.8V to VIN, whereas the MAX1952 has a preset output of 1.8V. Both devices are available in a space-saving 8-pin SO package. Learn More About PowerMind(tm)

II. Manufacturing Information

A. Description/Function:1MHz, All-Ceramic, 2.6V to 5.5V Input, 2A PWM Step-Down DC-to-DC
RegulatorsB. Process:B8C. Number of Device Transistors:2500D. Fabrication Location:California or Texas

Philippines. Thailand

October 26, 2002

- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	8-pin SOIC (N)
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive
E. Bondwire:	Au (2 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-3501-0029
H. Flammability Rating:	Class UL94-V0
 Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C 	Level 1
J. Single Layer Theta Ja:	109.3°C/W
K. Single Layer Theta Jc:	32°C/W
L. Multi Layer Theta Ja:	82°C/W
M. Multi Layer Theta Jc:	32°C/W
IV. Die Information	

A. Dimensions:	80X90 mils
B. Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide)
C. Interconnect:	Al/0.5%Cu with Ti/TiN Barrier
D. Backside Metallization:	None
E. Minimum Metal Width:	0.8 microns (as drawn)
F. Minimum Metal Spacing:	0.8 microns (as drawn)
G. Bondpad Dimensions:	
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:	Don Lipps (Manager, Reliability Engineering) Bryan Preeshl (Vice President of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.0.1% for all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{1000 \times 4340 \times 189 \times 2}$$
 (Chi square value for MTTF upper limit)
(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)
$$\lambda = 1.12 \times 10^{-9}$$
$$\lambda = 1.12 \text{ F.I.T. (60\% confidence level @ 25°C)}$$

The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the B8 Process results in a FIT Rate of 0.01 @ 25C and 0.26 @ 55C (0.8 eV, 60% UCL).

B. E.S.D. and Latch-Up Testing (lot JF01G3014A, D/C 0911)

The PM43-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA and overvoltage per JEDEC JESD78.

Table 1 Reliability Evaluation Test Results

MAX1952ESA+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	189	0	DF01E3111A, D/C 0716
	Biased	& functionality			
	Time = 1000 hrs.				

Note 1: Life Test Data may represent plastic DIP qualification lots.