

RELIABILITY REPORT FOR MAX189ACWE+ PLASTIC ENCAPSULATED DEVICES

March 30, 2011

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Approved by
Sokhom Chum
Quality Assurance
Reliability Engineer

Conclusion

The MAX189ACWE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

- I.Device Description IV.Die Information
- II.Manufacturing Information
- III.Packaging Information
-Attachments

V.Quality Assurance Information VI.Reliability Evaluation

I. Device Description

A. General

The MAX187/MAX189 serial 12-bit analog-to-digital converters (ADCs) operate from a single +5V supply and accept a 0V to 5V analog input. Both parts feature an 8.5µs successive-approximation ADC, a fast track/hold (1.5µs), an on-chip clock, and a high-speed 3-wire serial interface. The MAX187/MAX189 digitize signals at a 75ksps throughput rate. An external clock accesses data from the interface, which communicates without external hardware to most digital signal processors and microcontrollers. The interface is compatible with SPI(tm), QSPI(tm), and MICROWIRE(tm). The MAX187 has an on-chip buffered reference, and the MAX189 requires an external reference. Both the MAX187 and MAX189 save space with 8-pin DIP and 16-pin SO packages. Power consumption is 7.5mW and reduces to only 10µW in shutdown. Excellent AC characteristics and very low power consumption combined with ease of use and small package size make these converters ideal for remote DSP and sensor applications, or for circuits where power consumption and space are crucial.

II. Manufacturing Information

Α.	Description/Function:	+5V, Low-Power, 12-Bit Serial ADCs
В.	Process:	S3

Oregon

Pre 1997

Malaysia, Philippines

- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	16-pin SOIC (W)
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive
E. Bondwire:	Au (1.3 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-0101-0377
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	105°C/W
K. Single Layer Theta Jc:	22°C/W
L. Multi Layer Theta Ja:	69.1°C/W
M. Multi Layer Theta Jc:	22°C/W

IV. Die Information

Α.	Dimensions:	117 X 151 mils
В.	Passivation:	$Si_3N_4/SiO_2\;$ (Silicon nitride/ Silicon dioxide)
C.	Interconnect:	Al/0.5%Cu with Ti/TiN Barrier
D.	Backside Metallization:	None
E.	Minimum Metal Width:	3.0 microns (as drawn)
F.	Minimum Metal Spacing:	3.0 microns (as drawn)
G.	Bondpad Dimensions:	5 mil. Sq.
Н.	Isolation Dielectric:	SiO ₂
I.	Die Separation Method:	Wafer Saw

V. Quality Assurance Information

Α.	Quality Assurance Contacts:	Richard Aburano (Manager, Reliability Engineering) Don Lipps (Manager, Reliability Engineering) Bryan Preeshl (Vice President of QA)
В.	Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C.	Observed Outgoing Defect Rate:	< 50 ppm
D.	Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{\text{192 x 4340 x 370 x 2}}$ (Chi square value for MTTF upper limit) (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV) $\lambda = 3.0 \times 10^{-9}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor.

Cumulative monitor data for the S3 Process results in a FIT Rate of 0.04 @ 25C and 0.69 @ 55C (0.8 eV, 60% UCL)

B. E.S.D. and Latch-Up Testing (lot XTKDDB048Q D/C 9503)

x = 3.0 F.I.T. (60% confidence level @ 25°C)

The AD62-3 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2000V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-100mA.

Table 1 Reliability Evaluation Test Results

MAX189ACWE+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS	
Static Life Test (Note 1)						
	Ta = 135°C	DC Parameters	130	0	ITKDHQ001C, D/C 9936	
	Biased	& functionality	80	0	ITKAIQ002B, D/C 9935	
	Time = 192 hrs.		80	0	ITKEFQ001A, D/C 9931	
			80	0	NTKFGO060A, D/C 9616	

Note 1: Life Test Data may represent plastic DIP qualification lots.