

RELIABILITY REPORT FOR MAX1759EUB+ PLASTIC ENCAPSULATED DEVICES

December 11, 2009

# MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

| Approved by                       |
|-----------------------------------|
| Ken Wendel                        |
| Quality Assurance                 |
| Director, Reliability Engineering |



#### Conclusion

The MAX1759EUB+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

#### **Table of Contents**

- I. ......Device Description V. .....Quality Assurance Information
- II. ......Manufacturing Information
- III. ......Packaging Information
- .....Attachments

- VI. ......Reliability Evaluation
- Attackmente
- IV. .....Die Information

# I. Device Description

A. General

The MAX1759 is a buck/boost regulating charge pump that generates a regulated output voltage from a single lithium-ion (Li+) cell, or two or three NiMH or alkaline cells for small hand-held portable equipment. The MAX1759 operates over a wide +1.6V to +5.5V input voltage range and generates a fixed 3.3V or adjustable (2.5V to 5.5V) output (Dual Mode™). Maxim's unique charge-pump architecture allows the input voltage to be higher or lower than the regulated output voltage. Despite its high 1.5MHz operating frequency, the MAX1759 maintains low 50µA quiescent supply current. Designed to be an extremely compact buck/boost converter, this device requires only three small ceramic capacitors to build a complete DC-DC converter capable of generating a guaranteed 100mA (min) output current from a +2.5V input. For added flexibility, the MAX1759 also includes an open-drain power-OK (POK) output that signals when the output voltage is in regulation. The MAX1759 is available in a space-saving 10-pin µMAX package that is 1.09mm high and half the size of an 8-pin SO.



II. Manufacturing Information

A. Description/Function: Buck/Boost Regulating Charge Pump in µMAX
B. Process: B8
C. Number of Device Transistors: 0
D. Fabrication Location: California or Texas
E. Assembly Location: Malaysia, Philippines, Thailand

January 07, 2000

F. Date of Initial Production:

# III. Packaging Information

| A. Package Type:                                                            | 10-pin uMAX              |
|-----------------------------------------------------------------------------|--------------------------|
| B. Lead Frame:                                                              | Copper                   |
| C. Lead Finish:                                                             | 100% matte Tin           |
| D. Die Attach:                                                              | Conductive               |
| E. Bondwire:                                                                | Au (1.3 mil dia.)        |
| F. Mold Material:                                                           | Epoxy with silica filler |
| G. Assembly Diagram:                                                        | #05-1101-0142            |
| H. Flammability Rating:                                                     | Class UL94-V0            |
| I. Classification of Moisture Sensitivity per<br>JEDEC standard J-STD-020-C | Level 1                  |
| J. Single Layer Theta Ja:                                                   | 180°C/W                  |
| K. Single Layer Theta Jc:                                                   | 41.9°C/W                 |
| L. Multi Layer Theta Ja:                                                    | 113.1°C/W                |
| M. Multi Layer Theta Jc:                                                    | 41.9°C/W                 |

#### IV. Die Information

| A. Dimensions:             | 61 X 87 mils                                       |
|----------------------------|----------------------------------------------------|
| B. Passivation:            | $Si_3N_4/SiO_2$ (Silicon nitride/ Silicon dioxide) |
| C. Interconnect:           | Al/0.5%Cu with Ti/TiN Barrier                      |
| D. Backside Metallization: | None                                               |
| E. Minimum Metal Width:    | 0.8 microns (as drawn)                             |
| F. Minimum Metal Spacing:  | 0.8 microns (as drawn)                             |
| G. Bondpad Dimensions:     | 5 mil. Sq.                                         |
| H. Isolation Dielectric:   | SiO <sub>2</sub>                                   |
| I. Die Separation Method:  | Wafer Saw                                          |



#### V. Quality Assurance Information

| Α. | Quality Assurance Contacts:    | Ken Wendel (Director, Reliability Engineering)                  |
|----|--------------------------------|-----------------------------------------------------------------|
|    |                                | Bryan Preeshl (Managing Director of QA)                         |
| В. | Outgoing Inspection Level:     | 0.1% for all electrical parameters guaranteed by the Datasheet. |
|    |                                | 0.1% For all Visual Defects.                                    |
| C. | Observed Outgoing Defect Rate: | < 50 ppm                                                        |
| D. | Sampling Plan:                 | Mil-Std-105D                                                    |

# VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (  $\lambda$ ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \times 4340 \times 156 \times 2} \text{ (Chi square value for MTTF upper limit)}$   $\lambda = 6.89 \times 10^{-9}$   $\lambda = 6.89 \text{ F.I.T. (60\% confidence level @ 25°C)}$ 

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the B8 Process results in a FIT Rate of 0.06 @ 25C and 0.99 @ 55C (0.8 eV, 60% UCL)

## B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The PX73 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.



# Table 1 Reliability Evaluation Test Results

### MAX1759EUB+

| TEST ITEM           | TEST CONDITION  | FAILURE<br>IDENTIFICATION | SAMPLE SIZE | NUMBER OF<br>FAILURES |  |
|---------------------|-----------------|---------------------------|-------------|-----------------------|--|
| Static Life Test (I | Note 1)         |                           |             |                       |  |
|                     | Ta = 135°C      | DC Parameters             | 156         | 0                     |  |
|                     | Biased          | & functionality           |             |                       |  |
|                     | Time = 192 hrs. |                           |             |                       |  |
| Moisture Testing    | (Note 2)        |                           |             |                       |  |
| HAST                | Ta = 130°C      | DC Parameters             | 77          | 0                     |  |
|                     | RH = 85%        | & functionality           |             |                       |  |
|                     | Biased          |                           |             |                       |  |
|                     | Time = 96hrs.   |                           |             |                       |  |
| Mechanical Stress   | s (Note 2)      |                           |             |                       |  |
| Temperature         | -65°C/150°C     | DC Parameters             | 77          | 0                     |  |
| Cycle               | 1000 Cycles     | & functionality           |             |                       |  |
| -                   | Method 1010     |                           |             |                       |  |

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data