

RELIABILITY REPORT
FOR
MAX1721EUT+

PLASTIC ENCAPSULATED DEVICES

February 8, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX1721EUT+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The ultra-small MAX1719/MAX1720 monolithic, CMOS charge-pump inverters accept input voltages ranging from +1.5V to +5.5V. The MAX1720 operates at 12kHz, and the MAX1719/MAX1721 operate at 125kHz. High efficiency, small external components, and logic-controlled shutdown make these devices ideal for both battery-powered and board-level voltage conversion applications. Oscillator control circuitry and four power MOSFET switches are included on-chip. A typical MAX1719/MAX1720/MAX1721 application is generating a -5V supply from a +5V logic supply to power analog circuitry. All three parts come in a 6-pin SOT23 package and can deliver a continuous 25mA output current. For pin-compatible SOT23 switched-capacitor voltage inverters without shutdown (5-pin SOT23), see the MAX828/MAX829 and MAX870/MAX871 data sheets. For applications requiring more power, the MAX860/MAX861 deliver up to 50mA. For regulated outputs (up to -2 x VIN), refer to the MAX868. The MAX860/MAX861 and MAX868 are available in space-saving µMAX® packages.

II. Manufacturing Information

A. Description/Function: SOT23, Switched-Capacitor Voltage Inverters with Shutdown

Level 1

B. Process: S3

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: Malaysia, Philippines, Thailand

F. Date of Initial Production: March 31, 1999

III. Packaging Information

A. Package Type: 6-pin SOT23B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive
E. Bondwire: Au (1 mil dia.)
F. Mold Material: Epoxy with silica

F. Mold Material: Epoxy with silica filler
 G. Assembly Diagram: #05-1101-0115
 H. Flammability Rating: Class UL94-V0

Classification of Moisture Sensitivity per

JEDEC standard J-STD-020-C

J. Single Layer Theta Jb: 115*°C/WK. Single Layer Theta Jc: 80°C/W

IV. Die Information

A. Dimensions: 35 X 57 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 3.0 microns (as drawn)F. Minimum Metal Spacing: 3.0 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{6.211}{192 \times 4340 \times 80 \times 2}$$
 (Chi square value for MTTF upper limit)

where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 45.5 \times 10^{-9}$$

 $\lambda = 45.5 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S3 Process results in a FIT Rate of 0.04 @ 25C and 0.69 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The PX87-1 die type has been found to have all pins able to withstand a transient pulse of:

HBM: +/-2500 V per JESD22-A114 CDM: +/-750 V Per JESD22-C101

Latch-Up testing has shown that this device withstands a current of +/-250 ma.

Table 1Reliability Evaluation Test Results

MAX1721EUT+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	80	2	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data