

RELIABILITY REPORT FOR MAX16833BAUE+T

PLASTIC ENCAPSULATED DEVICES

September 14, 2010

## MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

| Approved by                     |  |  |  |
|---------------------------------|--|--|--|
| Richard Aburano                 |  |  |  |
| Quality Assurance               |  |  |  |
| Manager, Reliability Operations |  |  |  |



## Conclusion

The MAX16833BAUE+T successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

## **Table of Contents**

- I. .....Device Description V. .....Quality Assurance Information
- II. ......Manufacturing Information
- III. .....Packaging Information
- .....Attachments

- VI. .....Reliability Evaluation

IV. .....Die Information

## I. Device Description

A. General

The MAX16833/MAX16833B are peak current-mode-controlled LED drivers for boost, boost-buck, SEPIC, flyback, and high-side buck topologies. A dimming driver designed to drive an external p-channel in series with the LED string provides wide-range dimming control. This feature provides extremely fast PWM current switching to the LEDs with no transient overvoltage or undervoltage conditions. In addition to PWM dimming, the MAX16833/MAX16833B provide analog dimming using a DC input at ICTRL. The MAX16833/MAX16833B sense the LED current at the high side of the LED string.

A single resistor from RT/SYNC to ground sets the switching frequency from 100kHz to 1MHz, while an external clock signal capacitively coupled to RT/SYNC allows the MAX16833 or MAX16833B to synchronize to an external clock. In the MAX16833, the switching frequency can be dithered for spread-spectrum applications. The MAX16833B instead provides a 1.64V reference voltage with a 2% tolerance. The MAX16833/MAX16833B operate over a wide 5V to 65V supply range and include a 3A sink/source gate driver for driving a power MOSFET in high-power LED driver applications. Additional features include a fault-indicator output (active-low FLT) for short or overtemperature conditions and an overvoltage-protection sense input (OVP) for overvoltage protection. High-side current sensing combined with a p-channel dimming MOSFET allow the positive terminal of the LED string to be shorted to the positive input terminal or to the negative input terminal without any damage. This is a unique feature of the MAX16833/MAX16833B.



II. Manufacturing Information

- A. Description/Function:
- B. Process:
- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

## III. Packaging Information

| A. Package Type:                                                            | 16-pin TSSOP             |
|-----------------------------------------------------------------------------|--------------------------|
| B. Lead Frame:                                                              | Copper                   |
| C. Lead Finish:                                                             | 100% matte Tin           |
| D. Die Attach:                                                              | Conductive               |
| E. Bondwire:                                                                | Au (1 mil dia.)          |
| F. Mold Material:                                                           | Epoxy with silica filler |
| G. Assembly Diagram:                                                        | #05-9000-3720            |
| H. Flammability Rating:                                                     | Class UL94-V0            |
| I. Classification of Moisture Sensitivity per<br>JEDEC standard J-STD-020-C | Level 1                  |
| J. Single Layer Theta Ja:                                                   | 47°C/W                   |
| K. Single Layer Theta Jc:                                                   | 3°C/W                    |
| L. Multi Layer Theta Ja:                                                    | 38.3°C/W                 |
| M. Multi Layer Theta Jc:                                                    | 3°C/W                    |

## IV. Die Information

| A. | Dimensions:             | 80 X 71 mils                                                                        |
|----|-------------------------|-------------------------------------------------------------------------------------|
| В. | Passivation:            | Si <sub>3</sub> N <sub>4</sub> /SiO <sub>2</sub> (Silicon nitride/ Silicon dioxide) |
| C. | Interconnect:           | Al/0.5%Cu with Ti/TiN Barrier                                                       |
| D. | Backside Metallization: | None                                                                                |
| E. | Minimum Metal Width:    | Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)                       |
| F. | Minimum Metal Spacing:  | Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)                      |
| G. | Bondpad Dimensions:     | 5 mil. Sq.                                                                          |
| н. | Isolation Dielectric:   | SiO <sub>2</sub>                                                                    |
| I. | Die Separation Method:  | Wafer Saw                                                                           |
|    |                         |                                                                                     |

S45

6300

California, Texas or Japan

Philippines and Thailand

April 23, 2010

High-Voltage HB LED Drivers with Integrated High-Side Current Sense



## V. Quality Assurance Information

| A. | Quality Assurance Contacts:    | Richard Aburano (Manager, Reliability Operations)<br>Bryan Preeshl (Managing Director of QA)                           |  |  |
|----|--------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| В. | Outgoing Inspection Level:     | <ul><li>0.1% for all electrical parameters guaranteed by the Datasheet.</li><li>0.1% For all Visual Defects.</li></ul> |  |  |
| C. | Observed Outgoing Defect Rate: | < 50 ppm                                                                                                               |  |  |
| D. | Sampling Plan:                 | Mil-Std-105D                                                                                                           |  |  |

## VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (  $\lambda$ ) is calculated as follows:

 $\begin{array}{rcl} \lambda = & \underbrace{1}_{\text{MTTF}} & = & \underbrace{1.83}_{192 \ x \ 4340 \ x \ 96 \ x \ 2} & (\text{Chi square value for MTTF upper limit}) \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & \lambda = 11.5 \ x \ 10^{-9} \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & &$ 

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the S45 Process results in a FIT Rate of 0.49 @ 25C and 8.49 @ 55C (0.8 eV, 60% UCL)

## B. E.S.D. and Latch-Up Testing (lot SWRYBQ002A, D/C 0942)

The SP24-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/- 2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/- 100mA and overvoltage per JEDEC JESD78.



# Table 1 Reliability Evaluation Test Results

## MAX16833BAUE+T

| TEST ITEM                 | TEST CONDITION            | FAILURE<br>IDENTIFICATION | SAMPLE SIZE | NUMBER OF<br>FAILURES | COMMENTS             |  |
|---------------------------|---------------------------|---------------------------|-------------|-----------------------|----------------------|--|
| Static Life Test (Note 1) |                           |                           |             |                       |                      |  |
|                           | Ta = 135°C                | DC Parameters             | 48          | 0                     | SWRYBQ002A, D/C 0942 |  |
|                           | Biased<br>Time = 192 hrs. | & functionality           | 48          | 0                     | SWRYBQ002B, D/C 0942 |  |

Note 1: Life Test Data may represent plastic DIP qualification lots.