

RELIABILITY REPORT FOR MAX16831ATJ+

PLASTIC ENCAPSULATED DEVICES

December 21, 2008

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX16831ATJ+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

- I.Device Description
- II.Manufacturing Information
- III.Packaging Information

- V.Quality Assurance Information VI.Reliability Evaluation
-Attachments

IV.Die Information

I. Device Description

A. General

The MAX16831 is a current-mode, high-brightness LED (HBLED) driver designed to control two external n-channel MOSFETs for the single-string LED current regulation. The MAX16831 integrates all the building blocks necessary to implement fixed-frequency HBLED drivers with wide-range dimming control. The MAX16831 is configurable to operate as a step-down (buck), step-up (boost), or step-up/-down (buck-boost) current regulator. Current-mode control with leading-edge blanking simplifies control-loop design. Internal slope compensation stabilizes the current loop when operating at duty cycles above 50%. The MAX16831 operates over a wide input voltage range and is capable of withstanding automotive load-dump events. Multiple MAX16831s can be synchronized to each other or to an external clock. The MAX16831 includes a floating dimming driver for brightness control with an external n-channel MOSFET in series with the LED string. HBLED drivers using the MAX16831 achieve efficiencies of over 90% in automotive applications. The MAX16831 also includes a 1.4A source and 2.5A sink gate driver for driving switching MOSFETs in high-power LED driver applications, such as front light assemblies. The dimming control allows for wide PWM dimming at frequencies up to 2kHz. Higher dimming ratios of up to 1000:1 are achievable at lower dimming frequencies. The MAX16831 is available in a 32-pin thin QFN package with exposed pad and operates over the -40°C to +125°C automotive temperature range.

II. Manufacturing Information

High-Voltage, High-Power LED Driver with Analog and PWM Dimming Control

- B. Process:
- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

A. Package Type:	32-pin TQFN 5x5
B. Lead Frame:	Cu Alloy
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive Epoxy
E. Bondwire:	Gold (1.3 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#31-4824
H. Flammability Rating:	Class UL94-V0
 Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C 	Level 1
J. Single Layer Theta Ja:	47°C/W
K. Single Layer Theta Jc:	1.7°C/W
L. Multi Layer Theta Ja:	29°C/W
M. Multi Layer Theta Jc:	1.7°C/W

BCD80

Oregon

UTL Thailand

April 21, 2007

IV. Die Information

Dimensions:	Hybrid, mixed sizes
Passivation:	Si_3N_4/SiO_2 (Silicon nitride/ Silicon dioxide
Interconnect:	Aluminum/Si (Si = 1%)
Backside Metallization:	None
Minimum Metal Width:	3.0 microns (as drawn)
Minimum Metal Spacing:	3.0 microns (as drawn)
Bondpad Dimensions:	5 mil. Sq.
Isolation Dielectric:	SiO ₂
Die Separation Method:	Wafer Saw
	Dimensions: Passivation: Interconnect: Backside Metallization: Minimum Metal Width: Minimum Metal Spacing: Bondpad Dimensions: Isolation Dielectric: Die Separation Method:

V. Quality Assurance Information

A.	Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)
B.	Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C.	Observed Outgoing Defect Rate:	< 50 ppm
D.	Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4340 \times 48 \times 2}$ (Chi square value for MTTF upper limit) $\lambda = 22.4 \times 10^{-9}$ $\lambda = 22.4 \times 10^{-9}$ $\lambda = 22.4 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maximic.com/. Current monitor data for the BCD8 Process results in a FIT Rate of 2.3 @ 25C and 39.6 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The SP07-SP07T die type has been found to have all pins able to withstand a HBM transient pulse of +/-500 V per JEDEC JESD22-A114-D. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1 Reliability Evaluation Test Results

MAX16831ATJ+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES			
Static Life Test (Note 1)							
	Ta = 135°C	DC Parameters	48	0			
	Biased	& functionality					
	Time = 192 hrs.						
Moisture Testing (Note 2)							
85/85	Ta = 85°C	DC Parameters	77	0			
	RH = 85%	& functionality					
	Biased						
	Time = 1000hrs.						
Mechanical Stress (Note 2)							
Temperature	-65°C/150°C	DC Parameters	77	0			
Cycle	1000 Cycles	& functionality					
	Method 1010						

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data