

RELIABILITY REPORT

FOR

MAX16823ATE+

PLASTIC ENCAPSULATED DEVICES

June 2, 2010

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by	
Don Lipps	
Quality Assurance	
Manager, Reliability Engineering	

Conclusion

The MAX16823ATE+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

The MAX16823 three-channel LED driver operates from a 5.5V to 40V input voltage range and delivers up to 100mA per channel to one or more strings of high-brightness LEDs (HB LEDs). Each channel's current is programmable using an external current-sense resistor in series with the LEDs. Three DIM inputs allow a wide range of independent pulsed dimming in addition to providing the on and off control of the outputs. Wave-shaping circuitry reduces EMI while providing fast turn-on and turn-off times. The MAX16823 is well suited for automotive applications requiring a high-voltage input and is able to withstand load-dump events up to 45V. On-board pass elements minimize external components while providing ±5% LED current accuracy. Additional features include an active-high, open-drain LEDGOOD output for open LED detection, a +3.4V (±5%) regulated output with 4mA output current capability, short-circuit and thermal protections. The MAX16823 is available in thermally enhanced 5mm x 5mm, 16-pin TQFN-EP and 16-pin TSSOP-EP packages and is specified over the -40°C to +125°C automotive temperature range.

II. Manufacturing Information

A. Description/Function: High-Voltage, 3-Channel Linear High-Brightness LED Driver with Open LED

Detection

B. Process: BCD8C. Number of Device Transistors: 752D. Fabrication Location: Oregon

E. Assembly Location: China, ThailandF. Date of Initial Production: January 20, 2007

III. Packaging Information

A. Package Type: 16-pin TQFN 5x5

B. Lead Frame: Copper

C. Lead Finish:

D. Die Attach:

E. Bondwire:

Mold Material:

100% matte Tin

Conductive

Au (1 mil dia.)

Epoxy with silica filler

G. Assembly Diagram: #05-9000-2718
H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 48°C/W
K. Single Layer Theta Jc: 1.7°C/W
L. Multi Layer Theta Ja: 30°C/W
M. Multi Layer Theta Jc: 1.7°C/W

IV. Die Information

A. Dimensions: 105 X 105 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Al/0.5%Cu with Ti/TiN Barrier

D. Backside Metallization: None

E. Minimum Metal Width: 3.0 microns (as drawn)F. Minimum Metal Spacing: 3.0 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Don Lipps (Manager, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{\text{MTTF}} = \underbrace{\frac{1.83}{192 \text{ x } 4340 \text{ x } 48 \text{ x } 2}}_{\text{(where } 4340 \text{ = Temperature Acceleration factor assuming an activation energy of } 0.8eV)$$

$$\lambda = 22.9 \text{ x } 10^{-9}$$

$$\lambda = 22.9 \text{ F.I.T. } (60\% \text{ confidence level @ } 25^{\circ}\text{C})$$

The following failure rate represents data collected from Maxim"s reliability monitor program. Maxim performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maxim-ic.com/qa/reliability/monitor. Cumulative monitor data for the BCD8 Process results in a FIT Rate of 0.06 @ 25C and 1.08 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The SP15 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2500V per JEDEC JESD22-A114. Latch-Up testing has shown that this device withstands a current of +/-250mA.

Table 1Reliability Evaluation Test Results

MAX16823ATE+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (N	lote 1)				
	Ta = 135°C	DC Parameters	48	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
HAST	Ta = 130°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 96hrs.				
Mechanical Stress	(Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	-			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data