

RELIABILITY REPORT FOR MAX16812ATI+

PLASTIC ENCAPSULATED DEVICES

February 11, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by
Ken Wendel
Quality Assurance
Director, Reliability Engineering

Conclusion

The MAX16812ATI+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

- I.Device Description
- II.Manufacturing Information
- III.Packaging Information

VI.Reliability Evaluation

V.Quality Assurance Information

-Attachments

IV.Die Information

I. Device Description

A. General

The MAX16812 is a peak-current-mode LED driver with an integrated 0.2 power MOSFET designed to control the current in a single string of high-brightness LEDs (HB LEDs). The MAX16812 can be used in multiple converter topologies such as buck, boost, or buck-boost. The MAX16812 operates over a 5.5V to 76V wide supply voltage range. The MAX16812 features a low-frequency, wide-range brightness adjustment (100:1), analog and PWM dimming control input, as well as a resistor-programmable EMI suppression circuitry to control the rise and fall times of the internal switching MOSFET. A high-side LED current-sense amplifier and a dimming MOSFET driver are also included, simplifying the design and reducing the total component count. The MAX16812 uses peak-current-mode control, adjustable slope compensation that allows for additional design flexibility. The device has two current regulation loops. The first loop controls the internal switching MOSFET peak current, while the second current regulation loop controls the LED current. Switching frequency can be adjusted from 125kHz to 500kHz. Additional features include adjustable UVLO, soft-start, external enable/disable input, thermal shutdown, a 1.238V 1% accurate buffered reference, and an on-chip oscillator. An internal 5.2V linear regulator supplies up to 20mA to power external devices. The MAX16812 is available in a thermally enhanced 5mm x 5mm, 28-pin TQFN-EP package and is specified over the automotive -40°C to +125°C temperature range.

II. Manufacturing Information

Integrated High-Voltage LED Driver with Analog and PWM Dimming Control

- A. Description/Function:
- B. Process:
- C. Number of Device Transistors:
- D. Fabrication Location:
- E. Assembly Location:
- F. Date of Initial Production:

III. Packaging Information

28-pin TQFN 5x5
Copper
100% matte Tin
Conductive Epoxy
Gold (1.3 mil dia.)
Epoxy with silica filler
#05-9000-2711
Class UL94-V0
Level 1
47°C/W
1.7°C/W
29°C/W
1.7°C/W

BCD8

8699

Oregon

Pre 1997

UTL Thailand

IV. Die Information

A. Dimensions:	140 X 140 mils
B. Passivation:	$Si_3N_4\!/SiO_2$ (Silicon nitride/ Silicon dioxide
C. Interconnect:	Aluminum/Si (Si = 1%)
D. Backside Metallization:	None
E. Minimum Metal Width:	3.0 microns (as drawn)
F. Minimum Metal Spacing:	3.0 microns (as drawn)
G. Bondpad Dimensions:	5 mil. Sq.
H. Isolation Dielectric:	SiO ₂
I. Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts:	Ken Wendel (Director, Reliability Engineering) Bryan Preeshl (Managing Director of QA)
B. Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate:	< 50 ppm
D. Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

 $\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \times 4340 \times 48 \times 2}$ (Chi square value for MTTF upper limit) $\lambda = 22.4 \times 10^{-9}$ $\lambda = 22.4 \times 10^{-9}$ $\lambda = 22.4 \times 10^{-9}$ $\lambda = 22.4 \times 10^{-9}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the BCD8 Process results in a FIT Rate of 2.3 @ 25C and 39.6 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The SP04-2 die type has been found to have all pins able to withstand a HBM transient pulse of +/-1500 V per JEDEC JESD22-A114-D. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1 Reliability Evaluation Test Results

MAX16812ATI+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test	(Note 1)				
	Ta = 135°C	DC Parameters	48	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased				
	Time = 1000hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010				

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data